

ReGame 64 - Volume #1

2

CONTENTS

Regame 64: It is never too late for a Commodore 64 (volume #1)

Stefano Tognon

Copyright (C) 2016-2017 by Ice Team

Self-published online on 31/03/2017 with www.pixartprinting.it

This is a non-profit publication. All copyrights and trademarks are recognised and

used specifically for the purpose of criticism and review.

Chapter

I

1
1.1

2
2.1
2.2

3
3.1

4
4.1

5

6

7

II

Preface

Caren and the Tangled Tentacles
Creator's corner: code with enthusi

Let's Invade!
Creator's corner: 360° with Richard
Creator's corner: graphic with errazking

Donkey Kong 2016
Creator's corner: code with Peiselulli

The book of Ivan Venturi
Special QRcode angle

Graphic Pixel Art

Limbo (?)

Addendum

Bibliography

Page

3

4
6

20
22
24

25
27

30
31

32

36

37

39

Proofreading and improvements by Marc Walters

Cover illustrations by Lucia Piccin

Book layout by Stefano Tognon

ReGame 64 - Volume #1

3

This book is dedicated to all the old (and new) gamers out there for whom the
Commodore 64 is still very much alive.

In this volume we explore some of the video games
created in 2015 and 2016 and speak with their creators
about the motivations driving them and the difficulties
they encountered during development. We love the
idea of giving creators a platform beyond their games
on which to delight and inform their audience - and it
is for that purpose we made this book.

We take a look at "Caren and the Tangled Tentacles",
a point-and-click graphic adventure; "Let's Invade! ",
a new extended clone of Space Invaders; and
"Donkey Kong (2016)", a faithful port of the arcade
classic!

Although most of the book is dedicated to games,
we also give space to some of the best 8-bit
graphic masterpieces. This book showcases entries in
the graphics contests at the X’2016 and Syntax 2016 demo
parties.

We also examine a recent (im)possible project: a C64 port
of the recent multi-platform game, "Limbo"!

This first volume has 40 pages. The next will be
expanded to 44 pages if we can avoid increasing the
postage costs.

The final chapter is dedicated to the making of this
book.

PREFACE

You can reach the authors of this book at:
Website: regame.altervista.org
Email: regame@altervista.org

For information about IceTeam and their
other productions:

Website: iceteam.altervista.org
Email: iceteam@altervista.org
Facebook: www.facebook.com/IceTeamIt

ReGame 64 - Volume #1

4

The LucasFilm games division was
famous for their point-and-click

graphic adventure games based on the
SCUMM games engine. These include the
commercial and critical hits Maniac Man-
sion (1987), Zak McKracken and the Alien
Mindbenders (1988), Indiana Jones and the
Last Crusade: The Graphic Adventure
(1989), LOOM (1990) and The Secret of
Monkey Island (1990). The first two games
appeared on the Commodore 64, and the
later games on Amiga and MS-DOS.

In those games you use a joystick or
mouse-driven point-and-click User Inter-
face to control an on-screen character and
interact with objects and other characters
to solve a series of
puzzles to complete
the game.

I'm sure that many of
you will be thrilled to
have a new adventure
game on the C64 like
the LucasFilm ones
and this is not a
dream, but a reality!

Near the end of 2015
the development group PriorArt entered
their point-and-click adventure “Caren
and the Tangled Tentacles” in the Adven-
ture category of the Forum64 Game Com-
petition 2015. They won!

The game was coded by enthusi (Martin
Wendt) with graphic by Veto (Oliver
Lindau) and music by Jammer (Kamil
Wolnikowski). Their game submission
was version 1.0. It was later extended and
released as version 1.1 , followed by ver-

sion 1.3 which was a special limited edi-
tion for which just 100 cartridges were
produced by Retro Gamer CD (RGCD).

The cartridge-based release was a stretch
goal of the C64 Visual Compendium's
Kickstarter campaign. The other backers
received a USB pen drive the size and
shape of a credit card. Its cover features a

beautiful illus-
tration of Caren
amidst swirling
clouds, and the
flipside has a
stylised cassette.

The USB drive
contains a CRT
(C64 cartridge)
image file of the
game plus PC,
Linux and Mac

versions of the popular C64 emulator
VICE.

After the game loads you are presented
with an initial menu from which you can
choose the following actions:
•read the graphical game manual
•set the in-game language to English or
German
•load a previously saved game

The main game screen is split into three

Caren and the Tangled Tentacles

Genre
Released
Code
Graphics
Music
Year

Adventure
PriorArt
enthusi
Veto
Jammer
2016

Usb key with CRT image of the game

ReGame 64 - Volume #1

5

distinct areas: the topmost reserved for
speech text, a window in which the game
locations are displayed, and a graphical
control panel. When a game is not in pro-
gress an attract mode plays, featuring a
nicely animated Caren introducing the
people involved in the game’s develop-
ment.

When you start a new game you are

transported to a colourful, wonderful
world in which you can practice using the
innovative, entirely joystick-driven, con-
trol system. The joystick positions the
targeting reticle within the location win-
dow, a brief button-press moves Caren to
the reticle, and a longer press activates
the action panel in which location and in-
ventory objects can be manipulated.

"What is that sound? The phone! . . .
Nooo, it’s woken me from my pleasant
dreams.” Your day has begun with a tele-
phone call - you need to go to the chem-
ical laboratory.

But not before your morning ablutions!
Caren can use the bathroom, cook break-
fast, watch television, play - yes, actually
play - a classic Pong video game. She can

buy goods at a local store, then take a bus
to the laboratory where she will promptly
discover a corpse - and a mystery.

Okay, enough with the spoilers! We shall
now delve under the hood to examine the
game engine.

First of all, this is a true multitasking en-
gine that supports 32 threads. This allows

Don't miss the graphical manual

I like the Caren font!

Dream ... it is colored!

It is better to make the bed!

ReGame 64 - Volume #1

6

simultaneous interactions with non-play-
er characters (NPCs) and objects, plus
cued animations such as the elevator
doors that open and close.

Second, the character masking works per-
fectly. The locations have depth on the z-
axis, which means Caren may appear in-
front or behind objects. However, soft-
ware clipping (which is computationally
expensive) was not used. Instead, the de-
velopers chose a technique involving
hardware sprite masking. This introduced
colour limitations on the maskable ob-
jects, but the tradeoff allowed the game to
run at a full 50hz screen refresh.

The game locations are displayed flick-
screen, and the clean and simple graphics
demonstrate artistic skill and attention to
detail. The graphics, in this author’s opin-
ion, surpass that of Zak McKracken. For
example, Caren’s lips are accurately an-
imated when she speaks. Sprite anima-
tions are fluid and the pathfinding works
perfectly - Caren automatically navigates
around obstacles to reach the indicated
position.

The music and sound effects are many
and varied, although it should be noted
they’re written primarily for the 8580 SID
chip. Sound is cued to the scenes and

events. A good, and somewhat shocking,
example of this can be heard upon first
entering the laboratory in which the vic-
tim’s body lies.

Gamers well-acquainted with point-and-
click adventures might find the game easy
to solve and perhaps too short. However,
I think that even those players will enjoy
the game’s clever puzzles and innate
charm. In my opinion, this game is one
that shouldn’t be missed.

When I saw Caren and the Tangled
Tentacles for the first time I was instantly
reminded of The Day of the Tentacle - but
perhaps the similarities are coincidental.
So, can you describe how this adventure
game was born?

I'm filed! And now?

I'm playing PONG! wow

No, no, no. He is dead!

Creator's corner: code with enthusi

ReGame 64 - Volume #1

7

Usually I work on several projects at a
time, like so many coders do - often only
to the point that I am satisfied with the
effect or engine. Sometimes those get re-
used at a later point or, more likely, they
will be redone from scratch when needed.
While that might sound incredibly unpro-
ductive, it is what makes all the fun in
this hobby. Coding challenges and
obstacles and refining routines with every
iteration. And of course when I work to-
gether with graphic artists or musicians
we aim at a polished complete game or
demo in the end. Such as 'Assembloids' or
'Not even Human' in the past (available via
rgcd.co.uk or csdb.dk). With Veto I often
discuss ideas and concepts, and we have
already worked together on a number of
occasions.

I spent many months and years reverse-
engineering the SCUMM engine in Mani-
ac Mansion and Zak McKracken for the
C64. Well, the script-running engine was
later called SPUTM. I was (and still am)
amazed at what people came up with out
of nowhere in the late 80s. I personally
consider the point-and-click adventure
with an actual character on screen to be
the holy grail of 8-bit gaming. There is a
reason why there are so darn few games
of that genre on the C64 even though it
had a pretty huge impact on gaming.
Then in 2014 a Gamecoding compo was
launched in the German forum64.de

Its goal was to code an adventure or RPG
game from scratch within one year. I im-
mediately knew that I wanted exactly
that: a deadline to actually get things
done and a wonderful opportunity to start
with it. I believe I contacted Oliver 'Veto'
Lindau the very same day, as it was clear
that I would only want to do that with
him. Firstly, because I knew we had very

similar taste and understanding in games.
Secondly, because I already had ideas for
non-standard graphics tricks that I knew
not many would be capable of. And
thirdly, because his graphics simply rock
and, while there are other great artists
around on the C64, I know of no one who
could pull off such a beauty in char mode
with that amount of detail. In the past I
always had fun working with him - which
I guess is, in the end, the most important
ingredient to any project, particularly a
long lasting one such as this. We agreed
within minutes on the rough setting of
the game: detective style, 1980s, female
character. A total cliche in a way, yet
something very new to the 8-bit world.

We also wanted it to be a bit more serious
than many of the more recent adventures
for modern platforms. Many days of dis-
cussion and chat followed. In fact, we
have chatted on an almost daily basis ever
since the start of the project. It is a quite
awesome process and, I believe, very dif-
ferent than what you would expect from
larger, professional teams. We each threw
in many ideas - I guess both of us had a
long lasting urge to do at least one graph-
ic adventure. Our notes from that time
read pretty straight forward. Point-and-
click, perspective such as in Zak McK-
racken, no scrolling, multicolor charset,
special mode for animation, items as pic-
tures at the bottom area, three sprites per
character, and so on and so on.

You have implemented a perfect system
for the action/inventory; you do not need
to use the keyboard to choose actions to
perform, but instead the joystick button is
held for different durations to achieve a
variety of operations. How did you arrive
at the idea for this system?

ReGame 64 - Volume #1

8

That idea surfaced rather
early in the overall process
as we both deemed the
control scheme of such a
game very important. We
did not want to use the
pointer-dragging verb-in-
teraction style, nor did we
want to render it as a mere
arcade-style game where
you simply clicked on
things and the character
would do the right thing on
its own. We iterated a lot
over how this can be
handled. Major influences
were the later Sierra games
that cycled through actions on the spot in
the screen and the Action menu in Full
Throttle. At the same time we knew we
did not want an onscreen item system
with bags full of bags, etc. The player
should see what he is carrying and the in-
teraction should feel natural. We ended
up with the concept of three actions con-
trolled via a separate Action panel that
can be entered by a long button press on
the joystick - no keyboard control re-
quired.

Veto had a vision of that early on and his
very first mock-ups of the panel are
already pretty close to what we have now.
The competition version featured the ac-
tions Use, Look At and Use With to inter-
act with an inventory item. A
double-click of the button launched either
Use or Look At depending on the object.
Since then we’ve refined that further; we
removed the double click and added a
fourth action to quick-exit a room
whenever the exit is accessible (i.e., stairs,
open doors and roads).

It was of great help that Veto was able to

demo a super-early rendition
of the engine at Gamescom
2015. Seeing casual gamers
as well as pros of all ages
and sexes (including Ron
Gilbert) play our game was a
great motivation and also
provided extremely helpful
feedback. We did the same
with the current game at this
year's Gamescom which,
along with all the helpful
feedback we got from play-
ers of the game via Emails
and forum posts, led to fur-
ther small improvements.

Implementing a multitasking system with
the 6510 CPU is not an easy task - but in
the game it works very well. How did you
implement it? Also, the game has 32
threads running - can you briefly describe
each thread?

I knew that on a C64 the game would hit
two major challenges: the graphics engine
dealing with all the graphics for rooms,
items animation and characters; and, of
course, the engine running the game-lo-
gic itself. Any restrictions in that game-
logic engine might later limit what we
can do - but at the same time it has to be
as efficient as possible. So: a fast, small,
flexible, yet generic engine. When you
code a game in BASIC you inevitably end
up with endless rows of IF THEN state-
ments. That is fine for text adventures,
but for a game with live interaction you
need another approach.

I was always amazed at the things going
on the background in Maniac Mansion
and Zak McKracken, such as the ticking
clocks or moving escalators at the air-
ports. That multitasking system was, in

Ron Gilbert not hating Caren

ReGame 64 - Volume #1

9

fact, the first thing I coded for Caren. At
its core it checks thirty-two 16-bit timers
every frame and decreases them if they
are still running. Once a timer ends the
following information is read out from its
corresponding task-slot: the amount of
frames for the next call (if any), the 16-bit
address of the routine to call, and three
additional bytes that go into the three
CPU registers before calling the given
routine.

This is the sourcecode for task-slots occu-
pied by the engine:
.byte 1,5,<_flash_pointer,

>_flash_pointer,1,2,3
.byte 1,3,<_update_actions,

>_update_actions,1,2,3
.byte 1,19,<_update_mimik,

>_update_mimik,1,2,3
.byte 1,23,<_poll_keys,>_poll_keys,1,2,3

So, every 5 frames the pointer changes
color, every 3 frames the engine checks if
the pointer hovers over an item or object
and highlights the available actions ac-
cordingly, every 19 frames the actor's
mimic is updated and four times a second
the keys are polled to see if someone has
tried to load/save a game or change the
game's language. All these do not require
any additional external information and
run on their own. If, for example, the
game-script for a room contains a line
like this:
say "Nun ist es besser.",0,"That's better
now.",0

This is inserted as a task which carries the
address of the line of text in registers X/Y,
the talker’s ID in register A and a refer-
ence to the game routine _talk. The timer
is set to launch _talk in the very next
frame. The routine _talk replaces itself in
the multitasking flow by a function that
gets called repeatedly; it stores the text
display area, prints the text and parses the
spoken text letter by letter to animate
Caren's mouth. When the task-slot gets

called and parses the last letter it starts a
wait-loop and finally restores the graph-
ics of the text display area.

The game never reaches 32 simultaneous
actions but in that event the engine will
balance priorities. The first slots have low
priority, the last slots have high priority.
The engine checks the slots starting with
the last one. For example, a door anima-
tion might be assigned slot #31 , so this
will be done first.

This is important as Caren runs at full 50
frames per second and uses no double
buffering. The multitasking system starts
when the raster beam reaches the end of
the room graphics. The tasks that affect
on-screen graphics are dealt with first -
completed before the raster beam begins
drawing the visible screen of the next
frame. Computing pathfinding steps is a
low priority routine that can be executed
during display. If raster time runs short,
the next slots, such as for key-press
polling, will be skipped that frame to pre-
vent flickering sprites and other graphic
glitches.

We will be smart enough not to design a
room with 10 large doors that can all be
animated in parallel ;-). But if we did, the
engine would decide to delay the anima-
tions from say door 5 on by one frame.
This is also why update_actions and
flash_pointer above occur in prime num-
ber intervals; so they overlap as little as
possible.

I know you’re following the Ron Gilbert
diary of his new adventure game,
Thimbleweed Park. Ron is one of the
fathers of adventure games on the C64,
and the creator of the SCUMM scripting
engine. What can you tell us about your

ReGame 64 - Volume #1

10

scripting engine?

Making adventures without a scripting
engine can be very problematic. Yes, you
can try the approach of hard-coded IF-
THEN loops for each individual room, but
this will neither be much fun, nor very
flexible. Even after the initial competition
version the core scripting engine was ba-
sically done, which made adding new
rooms and individual features much more
feasible. While I am somewhat familiar
with the format of SCUMM, I chose a
very different approach for several reas-
ons.

SCUMM generates some sort of byte code
which the game engine then interprets in
real time. The game script reads "say
'hello'", the byte code then tokenizes say
into its own single-byte opcode. The
scummvm team did an amazing job re-
versing much of this concept, and every
now and then Ron Gilbert mentions his-
toric examples of it on grumpygamer.com
or pagetable.com (see http://www.paget-
able.com/?p=603, by me).

This approach has the smallest memory
footprint with regard to the individual
scripts that need to be loaded for every
room, but on the other hand it requires a
much larger engine as it has to implement
even the simplest things such as addition,
subtraction and addressing. At some point
I decided to got for a scripting language
that gets directly compiled or rather
translated into 6510 assembler. Every
game logic script in Caren is executed as
raw assembler code. The scripting lan-
guage is rather simple (since I had to
write my own 6510-Compiler for it ;-)

Consider the following script:
walk2obj +8 shelfmiddleleft
keep_walking

break for 20 frames
say "Dann untersuche ich mal.",0,"Ok,
let's analyse the sample.",0

It means:
•Have Caren walk to a position 8 pixels right
of the middle left shelf,
•Pause the script until she arrives,
•When she arrives, wait 20 frames,
•Say the text.

It compiles to:
ldx #35
ldy #60
jsr _set_walk2xy

wait_till_talking_ends
ldx #<(*+9)
ldy #>(*+7)
lda #20 ;in that many frames

jmp _break
lda game_actor_walking
eor #$ff ;ff=not walking

bne wait_till_talking_ends

ldx #<data041
ldy #>data041
lda #15
jsr _talk
bvc data_end041

data041
.asc "Dann untersuche ich mal.",0,"Ok,
let's analyse the sample.",0 ,0
data_end041

The XY coordinates of walk2obj are dir-
ectly computed during compilation time
based on the given objects and their posi-
tions in the script. The engine chooses if
the first part (German) or second part of
the text is printed. Both languages reside
in memory at the same time! The most
helpful game routine is probably _break.
It enters a new task into the system
which jumps to the address after the
break point (the (*+9) and (*+7) are 16-bit
pointers) in the given number of frames
and ends the current task. So at any
_break the script becomes sort of parallel.
The scripting language currently under-
stands the following commands:
if, call, set, end, say, play, animate,
setcurrent, break, walk2xy, walk2obj,
walk2npc, pickup, dro[,inc, dec, goto,
launch, loadroom, ifown, ifnotown, keep
_listening, keep_walking, enable_exit,
disable_exit, reconfig_area, recon
fig_object, place_caren, loaddata,

ReGame 64 - Volume #1

11

loadsid, hear, ifused, ifnotused, en
able_passive, disable_passive, exchange,
announce

Some of them have optional parameters
such as the +/- shift of pixels for the
walk2 command. The reconfig commands
are particularly powerful. This is an actu-
al line in the script:
if shelfmiddleleft_glasfull

reconfig_object shelfmiddleleft
usewith _analyseglas

It means IF there is a glass in the middle
shelf which is full THEN the function to
call when Caren uses it with an object is
set to _analyseglas; its default is the
dummy for 'none'. The disadvantage of
compiling into 6510 assembly is the size
of the individual scripts. Things occurring
often, such as animation, are implemented
as a global routine of the engine. There
are two main advantages though:

The first is its flexibility; my compiler ac-
cepts single assembly statements as well
as full blocks of assembly in the script.
For example, the routine to fade in Car-
en's bathroom did not require a lengthy
extension of the core engine but instead is
directly written in assembly inside the
script. The same applies for special cases
that deviate from the standard procedure
in the engine.

The other advantage is that I can now
link several (in fact, ALL) rooms at source
level; all core engine functions are
rendered globally. Also, each script can
export variables and flags to make them
accessible from other rooms. These vari-
ables are kept in memory during the
game. It only costs a few KBs and has a
huge impact on the gameplay. Any draw-
er or door that you open or close will
maintain its state over the course of the
game. This seems trivial, but it’s not com-
mon for games on the C64 or any other 8-

bit machine.

It is less an issue of memory and more
one of organizing all the data. Any
change in any room or the engine poten-
tially requires me to recompile and reas-
semble every single room - which is
reasonably fast on a cross-plattform PC
today, but unthinkable for a disk based
development system thirty years ago.
Changes in the engine are particularly te-
dious as they impact all rooms.

You used a new approach for the clipping
of the Caren sprites when she moves be-
hind foreground objects. Can you discuss
this system and any advantage (or disad-
vantage) it has over software clipping?

The way we mask Caren to the scenery
puts tight restrictions on all objects that
were to be foreground or something Car-
en might walk behind. The approach is
known in the demo scene as 'cookie cut-
ter', and, to my knowledge, has never
been applied in games before. It uses the
fact that the eight hardware sprites are
displayed in a strictly prioritised order
and each can be flagged as 'foreground' or
'background' - which controls whether
the VIC displays it in front of or behind
bitmap (ie, non-sprite) graphics. This is
unique to the Commodore 64.

Clipping example

ReGame 64 - Volume #1

12

Thus, a sprite can be displayed in front of
another while still being, technically, be-
hind the background. The net result is
that the sprite with lower priority gets
clipped by the mask-sprite and the bitmap
shows through. So whenever part of Car-
en is supposed to be covered, we place a
sprite with the proper mask-shape in
front of her - but behind the background.

In the “Clipping Example” image you can
see the sprite-mask layer in red, green
and blue, along with the scene as it nor-
mally appears - with Caren behind the
windows of the bus. You can also spot
areas of hires pixels around the tires and
luggage bins. There are almost twice as
many sprites needed than are shown here
since one is needed for transitions in
between those that are shown. Whenever
Caren walks in front of the bus all these
sprites are disabled. It is not quite that
simple though, since the background itself
is 'half transparent' and the masking
sprite shows through. In fact, two of the
four bitmap colors per tile are transpar-
ent.

We win one color back by giving the
mask sprite itself that very color. So every
graphical element that might be in front
of Caren can only have three colors. The
global background color and the first
global multicolor character-mode color
are always transparent. Veto (the artist)
can select one color for a character as well
as the color for the mask-sprite. Using
sprites as masks limits the size of
maskable objects but the engine can (and
does) generate masks dynamically. They
are in hires mode and, where needed, ex-
panded on one or both axes.

To be able to fully cover Caren, such as
when she’s behind columns, the dynamic

multiplexer re-uses Caren's head sprite
for any mask below her shoulders. Two Y-
expanded masks are always sufficient.
There are screens where Caren walks be-
hind wide objects such as a six-foot fence
or the windows of a bus. As she walks
there, the two masks are moved with her
and their shapes adjusted (via sprite
pointers) to match the object she is cur-
rently behind.

Using this somewhat unintuitive hard-
ware masking technique saves a lot of
CPU time compared to software-clipping.
Software-clipping is one of the main
reasons why the scrolling in Maniac
Mansion and Zak McKracken is slow and
the characters move horizontally in char-
acter-wide steps (you probably never no-
ticed that until now, though. Sorry!).
Hardware masking enables our game to
run at 50 frames-per-second (FPS) on PAL
systems (60 on NTSC) without buffering
either sprites or graphics.

However, there are some disadvantages.
Using precious sprites for masking fur-
ther reduces the amount of “free” sprites
per room. Only one non-player-character
(NPC) can be masked - partially. The
multiplexor reuses its head sprite to cover
ONE of the two persons on-screen. For
example, we can have two characters on-

Guy on the bench

ReGame 64 - Volume #1

13

screen with a fence in-between.

But that fence must be lower than the
head of the person behind because we can
not cover the head in the back independ-
ently from the foreground. So a bench,
garden fence, dust bin etc is fine. That
particular situation doesn’t arise in the
released version but the engine supports
it. Also available are masks for BOTH (the
global mask), such as a pole or sign.

AS a result, the whole sprite set-up is lim-
ited to two freely moving characters at a
time! But veto has already demonstrated
in our current development version that
NPCs can be rendered convincingly as
character graphics (see the guy on the
bench). Any software-based masking on
that scale would slow down extremely
with more than two 3-sprite-high charac-
ters, though.

What algorithm did you use for finding
the path for Caren to move to where the
player clicks on the map? That feature
has to be fast and reliable - and it seems
to be.

That was indeed a big one and took lots
of coding. Yet, I knew from the beginning
that it was possible at least, as Maniac
Mansion and, even more so, Zak McK-
racken, had already done a somewhat de-
cent job of it. The early SCUMM games
build up a walkable area consisting of
several contiguous boxes. For Caren, I use
that same approach. Up to sixteen boxes
make up the walkable area.
I run Dijkstra's algorithm for finding the
shortest path between any pair of boxes.
This yields the number of the first box,
Box C, to enter on your way from Box A
to Box B. Once you are in Box C, the new
task is to get from Box C to Box B via the

next box, and so on, until you reach the
destination box.

Restricting myself to 16 boxes allows for a
beautiful 16x16 matrix that fits in one
single memory page of the C64 and thus
can be addressed indirectly. You can ima-
gine a matrix with FROM as rows and TO
as columns. Each entry tells the engine
which box to aim for next. Now this
would be simple if Caren would jump
from box center to box center - but she
doesn't.

She will likely not start in the center of
any box, nor will the destination sit in the
center of any box. The shortest path
might not even cross any box center for
that matter. What happens is the follow-
ing:
•Caren aims for the closest point on the
side of the next box that touches the box
she currently stands in.
•Once reaching that point on the overlap-
ping sides she again aims for the closest
point on the closest side of the next box
until she reaches the side of the final box
- which lets her target the destination
directly. Any rectanglar box is convex, so
any point within a box can be reached
directly from any point on any side.

It is quite nasty to actually implement
this in a practical way, such that she nev-
er leaves a box even when walking along
one of its sides, and that she properly
carries out the transition from one to the
other box when aiming for the sides. One
costly CPU problem is to determine
which of the four sides of a given box is
actually the closest to a given position. To
select the closest you would have to
check all four sides, find the closest point
on each of them and then compare the
distances to the given position. This can

ReGame 64 - Volume #1

14

be sped up since you can omit any square
roots - you are not interested in the actual
distance, but merely the order of dis-
tances. Yet, this takes a considerable
amount of time in the MM and ZMK
game engines. For Caren, I decided to pre-
calculate even that. Any matrix entry has
a unique SOURCE and DESTINATION
box, and carries a single number for the
next box.

It was handy to have 16 boxes for a 16x16
matrix but it is even more handy now as I
only need 4 bits of the matrix entry to
identify the next box. I use the upper bits
to give information on the side from
which to enter the coming box (as well as
information if it is currently being
blocked, i.e. for closed doors). So instead
of four computations, I now only need
one - which still takes a notable amount
of raster time.

So you find the closest point on a vertical
or horizontal line and then move to that.
The 'move' part again is a bit tricky. Usu-
ally you would apply some Bresenham al-
gorithm but even that felt too long for
this free directional approach. Instead, I
derive a fractional dx (direction-x) and dy
(direction-y) step in 8.8 format. To get
there I take the absolute dx*256 and
dy*256 to the target as 16-bit words and
divide them until their sum gets below a
certain threshold. At the same time, I
double a steps-variable and thus end up
with the amount of steps Caren needs to
take of the size dx, dy to reach her destin-
ation. This is very fast but leads to
slightly different walking speeds for Car-
en depending on the length of her current
path. The animation takes this into ac-
count though, and in the end it works out
quite well.

Deriving the proper target position is not
trivial either, once you think about it. You
generally do NOT want Caren to walk to
the pointer, but to the point BELOW the
pointer in the walkable area. Walking to a
framed picture on the wall means walk-
ing to a point some 70 pixels below the
actual pointer. So every time you press
and release the button to guide Caren
somewhere, the engine checks if the
pointer already is in a walkable area, then
it takes the pointer’s coordinates as a tar-
get. It corrects for the offsets of the sprite
in the upper left to the pointer's center.
The same applies for Caren, who has an
offset for the position between her feet.

If the pointer is outside a walkable area it
first checks all 16 boxes to find the one
closest to, but below, the pointer. If that
fails it checks above the pointer (which
happens, though less often, such as when
pointing at a road but being limited to the
walkable sidewalk above it). Finding any-
thing that is 'closest' always requires a
check of all boxes, although you can op-
timize it by assuming most walkable areas
are aligned horizontally; so you check
those boundaries first, and so on.
I drew all walking-boxes in Xfig, an open-
source vector graphics program written
in 1985.

What development environments and
programs did you use to develop the
game? How many times did it have to be
rewritten?

Xfig: yellow - walking boxes, white - trigger zones

ReGame 64 - Volume #1

15

Actually, I never restarted from scratch
during the process. The previously men-
tioned routines for walking and the mul-
titasking system were done independently
and then merged at some point. For some
time now I’ve been using a versioning
system that helps me keep track of things
- as well as the current status, since I code
on several different machines. The assem-
bler I use is Floodgap's XA assembler,
which comes with a suitable disassembler
and uses a pretty straightforward syntax -
which I prefer. The only things I use bey-
ond bare opcode translation are #defines
and local labels. The whole assembly is
organized via Makefile(s) and many py-
thon scripts I’ve written for individual
purposes. Most notable of these scripts is
the converter for the room graphics and
animations, but they also include the
script compiler, file system generator and
the box-matrix pathfinding routines. I fol-
low the KISS (Keep It Simple, Stupid!) ap-
proach: have individual tools for
individual tasks.

The project's Tools folder contains 38 dif-
ferent python scripts at the moment
(some are in other directories). Some
scripts are really simple, such as set_ver-
sion.py which takes care of my internal
versioning of the engine. I like
avoid_mayhem.py, which runs consist-
ency checks against the scripts, and
grapher.py, which automatically generates
a giant chart connecting all rooms ac-
cording to their accessibility from each
other. Each room is represented by its
main graphics and a colored frame rep-
resenting the music (or sound-effects
catalog) used in that screen as well as all
the items you can get or lose. It generates
DOT code for utilities such as Graphviz.
It’s little things like that generate a lot of
fun - and save lots of time, too :).

I do all the development on linux systems,
mostly running on a rooted ARM
Chromebook or Raspberry Pis. A simple
text editor with personalised syntax
highlighting such as Kate or sometimes
even mcedit from Midnight Commander.
Mercurial/Bitbucket is used for versioning.
Python is used, of course. For a packer I
used Doynamite 1.1 from Bitbreaker - al-
though right now most files go unpacked
on the Easyflash with a loader optimized
for speed. At some point even the 1 MB of
the Easyflash cart will not suffice for raw
data, so some selective packing will come
back into play.

These days it is very easy to feel superior
when doing cross-development for 8-bit
platforms. The tools available have a huge
impact on what can be achieved. Also,
many of the chosen solutions to coding
challenges are based on what has been
available and continually refined over a
long period of time. Yet, one should never
underestimate the skills early game
coders (well, some at least) had in the 80s.
After all, they did it for a living and were
coding in 6502 assembly all the time.
People in 2016 are not smarter than 30
years ago. Take away the tools and the
internet then things will start falling
apart for most of us. While the demo
scene reaches new heights on almost an

The game title screen

ReGame 64 - Volume #1

16

annual basis, the code quality as such
does not change too much.

Many achievements are based on a better
understanding of the hardware (including
illegal opcodes), but not so much on pro-
gress in the art of 6502 assembly. In the
last few years hobbyists have simply star-
ted to put way more time and energy into
their projects - which is why so many
new great demos and, occasionally, games
surface. One of the reasons why things
worked out so well for Caren is that, for
some time, I have worked on subsets of
the challenges involved over and over
again, read other people's code and re-
versed interesting game routines. It helps
to have seen many games and implement-
ations to at least know what to avoid.
Also, Veto is pretty knowledgeable when
it comes to modern games as well.

How did you feel about working with
Veto (graphics artist) and Jammer (sid
musician)?

I still work with both of them and it is al-
ways a great joy. Without Veto and me
working so well as a team this game
would not have surfaced at all (as hap-
pens with so many other game projects
these days). From Day One we managed
to make decisions on the engine or game
design very quickly - which is wonderful.
We each respect each other's skills and
have a good idea what to ask for, and
what not to. There were some ideas I
really wanted implemented, such as the
animation approach, even though I knew
it would be an extra pain for Veto. There
were things Veto had a strong opinion
about, such as the asynchronous sprite
animation of arms and legs and the head
bumping in between. But we are also fine
with disagreeing over some ideas - which,

in the end, helped the game a lot, I am
sure.

Jammer joined at a rather late stage be-
fore the original competition deadline,
and several tunes and sound effects were
changed or even implemented in, quite
literally, the last few minutes - which was
quite a thrill. When Jammer agreed to
work on Caren and also join PriorArt
there were some choices to be made;
Jammer didn't like the idea of simple
sound effects on a third voice replacing
part of the running music. Thinking
through some possible variations and al-
ternatives we decided to follow an all-or-
nothing approach - with Jammer being
the Sound Director. Each room has either
a wonderful three-voice SID track or
sound effects implemented as complete
sub-tunes, thus having available the en-
tire capacity of the SID.

That required a major effort from Jammer
since each SFX is a little tune in its own
right, but it was a decision that led to, in
my opinion, the best sound effects you
have ever heard in a game. The tunes
themselves are outstanding and Jammer
made them specific to certain areas of the
game. The sewers have their own mood
in contrast to the friendly street themes
and the dramatic climax near the end of
Caren 1.1 .

For all three aspects of the game - en-
gine/scripting, graphics/animation and
music/sounds - we tried something new,
which I think worked out quite well but
only because the three of us cooperate so
well. Jammer has added a lot since ver-
sion 1.1 ; and once again, while I asked for
certain directions of tunes in a few cases,
Jammer had his own vision of how things
could play along nicely, such as the con-

ReGame 64 - Volume #1

17

tinuous playing of a tune across several
screens of the same scenery, such as the
street or sewers. A nice example is the
pong game you can play within Caren.

I had stumbled upon a detailed descrip-
tion of each of the sound effects of the
original arcade game, which included
waveforms and exact frequencies. I asked
Jammer to implement all of them, just for
the fun of it. That was at a time when
things had already became pretty tight.
Jammer not only composed all those ef-
fects but he also added distinct filtering to
mimic the characteristic sound of com-
mon TV speakers of the 80s. That is a
prime example of what I meant about
everyone contributing his own OCD to
the project ;-)

For several scenes
we discussed very
precise aspects of
scripting, audio and
animation. The mu-
sic has quite some
depth to it as well.
You may recognize
some small refer-
ences to known
pieces of music or to
the action on screen.
For example, if you pay attention to the
tune in the second scene you’ll notice the
growing presence of the phone’s ringing
interwoven with Caren’s dream experi-
ence.

The Kickstart (limited edition) version
produced for cartridge gives a boost to
the game and many are asking for a fol-
low up. What can you say about this?

After the competition we spent some
weeks fixing, polishing and proofreading

for a stable release of v1.1 . That one is
freely available. You can get it from here:
http://csdb.dk/release/?id=141659

The “Kickstart” version is a greatly en-
hanced limited version produced for the
backers of the book Commodore 64 - A
Visual Compendium: 2nd edition. Each
backer received it on a USB drive,
bundled with emulators. There were also
100 physical boxes produced, with the
game on a dedicated cartridge designed
by Siem Appelman. While that limited
version included many new scenes, the
overall plot stayed the same and it ends
with a cliffhanger - and indeed, we will
carry on.

We are in the process of creating an even
larger adventure for Caren. Changes ap-

plied to the game so
far will contribute to
the first chapter of
the new game; by
this, I mean that it
will be one large
game but, as with
Monkey Island, the
game will consist of
distinct episodes.

We designed a small
city map in which all buildings and
streets will eventually be accessible. The
player should be able to move around
freely (well, of course you can’t just enter
any house any time :)). This will also al-
low us to implement a few more charac-
ters into the game, as we’ve done with the
version used for the second Visual Com-
pendium book’s Kickstarter campaign.

Right now we are in the process of pol-
ishing and extending the engine. Some
existing rooms need upgrades as well,

Caran on cartridge!

ReGame 64 - Volume #1

18

even though all have worked
well so far. From feedback,
our own experience and
simply watching people
playing the game we have
obtained some ideas on how
to render the gameplay even
smoother.

There will be no double-
click required any more. Instead, the
quick-exit option will become part of the
action-panel. We cannot provide any re-
lease date as this depends on many
things: family, work, health... We’re aim-
ing for a 2017 release, though. The game
has became huge already and will grow
considerably - which is why this will not
be released as a disk-based game. The ex-
clusive book-backer version was distrib-
uted on 1 MB carts and, obviously, the
final game will not be smaller.

Also, we will continue to support German
and English versions of the game :). By
now, the game logic scripts have sur-
passed 12000 lines and there are more
than 650 lines of text and 13 SID tunes,
with more than 40 additional sound ef-
fects.

Have you any special information or con-
sideration to share with us about the
game?

We presented the game at the
Gamescom 2016 in Cologne. It
is the world's largest games
exhibition, with around
350,000 visitors. Although not
everyone played the game we
were quite delighted to see
the amount of people who
stopped by and took a turn on
our game. Young (we

provided a stool so they
could see the screen
better), old ("See kids!
Those were the days! "),
men and women. Des-
pite a point-and-click
adventure game being
less than ideal for pass-
ers-by to learn and play
(unlike casual shoot-

em-ups), our stand was almost always oc-
cupied (and so were we!). We were
amazed at the large variety of players:
grandpas showing their nephews that 'old
machine', people who could not believe
that what they saw ran on their child-
hood computer, and folk who were con-
siderably younger than the hardware they
were playing on.

To us, it was also a great opportunity to
finally meet up with Robert Megone, who
helped a lot with proof-reading, transla-
tion in general and, of course, play testing
:). Robert is the lead tester of Ron's cur-
rent project ThimbleWeed Park and is
also involved in ScummVM. He ap-
proached us via Facebook and IRC (yes,
really! :)) to offer his invaluable help.
Thanks again, Rob! We had a great time
and kept on discussing ideas and concepts
for Caren's future. I consider him a very
valuable member of our (and any other)
team.
http://www.robertmegone.com/

Meeting him and oth-
er adventure game
maniacs at events
such as the Adventure
Treff party was ex-
tremely motivational -
although, frankly, we
never lacked motiva-
tion during the almost

Players at Gamescom

Classic-Computing in Nordhorn

ReGame 64 - Volume #1

19

two years of development. A few weeks
later we had the opportunity to show the
game to the retro-hardware-focused com-
munity at Classic-Computing in Nord-
horn, Germany. While there we had more
time to have detailed discussions with in-
terested people, and to brainstorm ideas
about what to include in the large game
project that this has now become.

It feels very good to see people play and
enjoy the game. Although seemingly trivi-
al, my experience is that it is not; far too
many games are merely being collected
and owned - but never played. A further
surprise was the multi-page
article featuring new C64
games in Gamestar, Ger-
many’s largest game
magazine, which featured
Caren and the Tangled
Tentacles along with the
other major C64 titles from
this year's Gamescom, Sam's
Journey and Tiger Claw. The
article, in German, can be
read online here:
http://www.gamestar.de/spe-
cials/spiele/3301527/gamescom_2016.html
.
All of the featured C64 games are unique
creations - not ports or de-makes of pop-
ular originals. I believe it's that spirit
which captures the attention of the play-
ers. A single screenshot of Super Mario or
Monkey Island on C64 might attract ten
times more people than something com-
pletely new - but would such a title actu-
ally sustain people’s interest?

Would you play Super Mario or Civiliza-
tion on the C64 if it existed on other sys-
tems? To me, it's those titles that embrace
the C64’s restrictions and work with them
that ultimately stand out. A game is so

much more than just code, graphics and
music! At the end of the day none of us is

a professional game designer;
however, no one was in the
early days, either. It is prob-
ably the spirit within the
team that dictates whether a
game is to be enjoyable or a
mere technical demo.

We were stunned when our
game won the “4Players Best
Scene-Game Award 2015”, the

“Forum64 Game Competition 2015” and the
'Interactive' category of the cross-plat-
form “Meteoriks Scene Award 2016”. The
four of us truly enjoyed planning and
working on this game - and there is noth-
ing more satisfying than the fact that
people enjoyed playing it.

Lemming recently made a short clip of
the version received by the bookbackers:
https://www.youtube.com/watch?v=7lY5-
wg_LHE

Veto, Robert, Enthusi at Gamescom

Veto at Meteoriks

ReGame 64 - Volume #1

20

Let's Invade!

"
4th December 2077: Earth has suc-
cessfully made contact with alien

life forms. Luckily, most of them are
friendly and welcoming. Humans and ali-
ens are working together on several planets
ofthe Solar System to bring about a peace-
ful galaxy and a better worlds for all. One
year later, an unidentified giant mother
ship approaches planet Earth. Scientists
work hard to establish communication with
the giant ship. The translation of the
strange alien signal is successful... but it
brings bad news. The new visitors have not
come to Earth to help out. They are very
greedy and want to invade all planets.
Planet Earth is at the top of their list. A
message from Planet Earth is sent back to
the alien leader: Earth will fight back! The
mother ship beams out a psychedelic vortex

field, and spits out hordes ofaliens... ready
for the invasion. Planet Earth beams mobile
military bases, and prepares to do battle
with the aliens inside the vortex field."

Back in the old days I would buy a game
cassette and, while the game was loading,
I’d read the story (much like the one
above) printed on the cover-slip and won-
der what I’d find when the program star-

ted. So, after all that, what can we expect
from Let's Invade!, the new game by
Richard Bayliss of programming group
The New Dimension?

If you were thinking “Just another Space
Invaders clone” then you are a long way
from reality. Let's Invade! is different, even
if it is based on the classic Space Invaders.

Once loaded, the first thing you are
presented with is an introductory screen
similar to the “intro” used on cracked

games. This one has a TND logo, a
scrolling text message and music.

Before I say another word you should
know that I cannot be objective when
speaking about Richard’s music as I con-
sider him as Matt Gray’s successor - with

Genre
Released
Code
Graphics

Music
Year

Arcade
The New Dimension
Richard Bayliss
Richard Bayliss
Igor Errazking
Richard Bayliss
2016

A pre-title animated screen

It's an alien fire storm!

ReGame 64 - Volume #1

21

a dance style that I could listen to for
hours! I’m also pleased that Richard cre-
ated the music for my own game, Little
Sara Sister 1.5 ;).

I listened to the intro music for 30
minutes then pressed a key to continue.
Next appeared the game’s main introduct-
ory screen, accompanied by a “techno”
style music track. The title picture by Igor
Errazking depicts a menacing, blocky in-
vader silhouetted against a fiery explo-
sion - which I find very appropriate for
this game.

Despite the blinking "Press Space" prompt
which eventually appeared in the upper
right-hand corner I stayed on this screen
for another 30 minutes just to listen to
this hypnotic track. Damn you, Richard! :)

Once we continue (or escape) the main
intro we encounter a warning message
with an option to disable game features
which might trigger epileptic seizures.

After this we reach the game’s titlescreen.
In my opinion this is one of the best ever
created; it is somewhat reminiscent of
"Boulderdash" - scrolling background in-
side the text, an animated alien, blinking
stars, scrolling text message, and (once
again) another 30-minute “don't-press-

the-button-just-listen-to-this-damn-mu-
sic” track that begins as innocuous alien-
like burblings before launching into a
full-frontal audial assault, Richard-style.

On the titlescreen you use the joystick to
choose the in-game graphics to be either
blocky solid-fill or large, transparently
bordered pixels; and to select whether
music or sound effects will be played. The
game begins with a static screen in which
25 aliens arrayed in five rows must be
destroyed, just like in Space Invaders.
However, there is a significant difference
compared to the original arcade game:
there is a scrolling background that
flashes to the sound of the drumbeat in a
psychedelic manner. Wow!

The game increases in difficulty from
level to level. The well-written PDF

A perfect title screen

Dotted aliens

Solid aliens

ReGame 64 - Volume #1

22

manual describes the changes en-
countered. One example being that in
lower levels an alien can be killed with a
single shot - but it takes two shots in later
levels. Also, the alien bullets are faster in
advanced levels. Fortunately, you receive
helpful “power-ups” by killing orange ali-
ens, and extra lives for destroying purple
aliens.

The game totals 40 levels in addition to a
proper animated finale (I cannot say more
otherwise I’ll spoil the surprise!).

Several more excellent tunes, such as the
one on the animated highscore table, have
meant that I spent hours just listening to
music while reviewing this game! Thanks
Richard :).

Let's Invade! is an example of how a game
should be: it is complete in all aspects, has
innovative gameplay that respectfully ex-
tends the original concept, and if the in-
game “trance” music is not to your taste
you can replace it with sound effects.

Space Invaders is a classic which has in-
spired the creation of many clones on the
Commodore. How did you get the idea for
this innovative version?

I was a big fan of the original arcade clas-
sic, and as a C64 musician, as well as a
programmer, I saw a few C64 Space In-
vaders games. I always had a dream to
make one for the C64, but of course it had
to be something slightly different :). I had
a modern day idea for a C64 Space In-
vaders game: a psychedelic stylish twist,
with in-game background animation and
my traditional 8-bit SID trance music.

What equipment and programs did you
use for making the code, graphics and
music of the game and how much time
was needed to complete it?

I mostly used cross-platform utilities for
the project.

Spritepad was used to create the game
sprites. Cuniforme was used to make the
game background and charset graphics.
D64 Editor was used for importing/ex-
porting program data from/to .d64s.

To program the game I used Notepad++
with KickAssembler cross-assembler and
Exomizer plugin. For making the trance
music and in-game sound effects I used
Goat Tracker V2.27.

Exomizer was used for the best possible

Nooo. Aliens win!

Name to insert: ICE

Creator's corner: 360° with Richard

ReGame 64 - Volume #1

23

compression - without too long a waiting
time for decrunching.

I used my Tape Master Pro V3.0 utility to
generate a tape master, and Martin Piper's
custom IRQ disk turbo loader for playing
music and displaying the picture while
the game was loading.

Action Replay M/C monitor was used to
move the load address of the disk version
of the game to a specific area, for the IRQ
disk loader.

How did you make stroboscopic effects
synchronized with the music, and how
difficult or easy was it to achieve?

It wasn't too much of a difficult task. I
used Style's Music Analyzer to work out
which position in the music's memory
triggers the trance drum sound. I noted
down the area which I should check for,
then implemented a check subroutine
which detected the value of the drum in-

struments (which were displayed in the
music analyser). The flash effect was set
inside a loop. After the flash effect table
value reaches the end it gets reset to one
before the last value. Every time the drum
sound was detected the pointer which
controlled the value of the flash was set

to zero so that the flashing effect restar-
ted.

Are you satisfied with the increasing de-
gree of difficulty you gave to the various
levels and the power-up you inserted into
the game that make it very different to
the classic Space Invaders?

Yes. Although, personally, I have now
learned I really should have made the
game harder to play by increasing the ac-
tual speed of the alien bullets. The game
was pretty much too easy to play ;). Also,
I probably should have programmed my
own sound effects player instead of using
the built-in SFX player inside Goat Track-
er. This was because of the delay before
actually playing the sounds in the game.
The faster aliens don't play sounds at all.
Hmm.

You have added the possibility to change
the alien graphics and to choose between
music and sound effects. Are there any
features you wanted to add but didn’t?

I would have loved to have added a bit-
map background into the game but, due
to the amount of memory that I used, that
wouldn't have been possible. Also, as
mentioned above, I wish I had pro-
grammed my own sound effects and

Takes some time to read this

This is a true HighScore!

ReGame 64 - Volume #1

24

made the game harder
to play. Still, I was
happy with the result
overall :).

Is there a possibility
for an improved ver-
sion or a cartridge
version of the game?

If there is a 16KB cart-
ridge compo coming in
the near future I might consider making a
deluxe version of the game - which could
feature multi-colour sprites, harder game-
play, and of course my very own SFX
player. This would probably compensate
for the sound bugs in my previous release.

How did you get the idea for the image? I
find it very apocalyptic and appropriate
for the game.

It's a recurring idea in my head. I never
saw ships in Space Invaders (except the
UFO at the top).They look like aliens to
me and that's the way I think they would
be destroyed.

I have to say that Bayliss did not ask me
for the drawing. As soon as I saw his
game I worked on the picture between my
games - "et voila".

How did you go about its creation, and
how much time did it take?

As I did it is a secret - no, not really - XD.

This version for the C64 is a revision of a
version that I published in Miiverse ... if
you see it then it will surprise you - it is

the same.

Incidentally, the
size of the draw-
ings in Miiverse
match those of
the half-screen of
the C64 ... To
those who have
access to Miiverse
I recommend that
you use it.

I imported the image to Gimp then added
the background explosion and title then
exported it to Pixcen. This type of conver-
sion can be painful when you have to re-
sort to even more tools to get it done. In
this case I used Ganged to retouch the
image to my taste and whim. Although
general opinion suggests otherwise,
drawing is not an overly difficult process
(if you know how to) and doesn’t take
long to get a result. It usually takes me no
more than two hours to draw a picture
but there are always exceptions.

As a newcomer with only two years ex-
perience of the C64 I have to say that I am
captivated by the complexity of
something seemingly as simple as 8-bit
graphics. Only those who have dedicated
themselves to working with them are
fully aware of the beauty and complexity
that can be found within in such images.

What the hell is this?

Creator's corner: graphics with Errazking

ReGame 64 - Volume #1

25

Donkey Kong was one of the first ar-
cade game ports I played on a Com-

modore 64. Nintendo released it many
years ago - way back in 1983 - and it had
been a real shock to learn the C64 was
able to reproduce a game that previously
we’d only ever encountered at local bars -
housed in a bulky cabinet and playable
only if we fed it a coin. Today, in hind-
sight, I reckon my initial shock of seeing
Donkey Kong on a C64 would have been
even greater had I encountered the new
port that coding group Oxyron released
earlier this year!

This new version opens with an amaz-
ingly detailed introduction screen from
talented C64 artist Veto; amid steel
girders of an unfinished skyscraper a de-

fiant Kong hurls a barrel toward unseen
foes. The accompanying music is C64 mu-
sician Linus’ perfect arrangement of the
title music from Nintendo’s Donkey Kong
Country.

At the press of a key we are catapulted
into a repeating sequence of screens: high
score table with “coins”, a 30-second “at-
tract mode” and the title screen.

Applause!
That applause is not just for the existence
of those screens, but also for their ap-
pearance. The game looks very similar to
the arcade version - a point we need to
discuss further:

If you remember the original Donkey
Kong arcade game you’d be correct if you
thought its aspect ratio might be difficult
to replicate on a Commodore 64. The
C64’s versatile multicolour mode comes
at a cost: the horizontal resolution is
halved, so pixels become twice as wide -

an effective aspect ratio of 2:1 . Images
originally designed for a 1:1 ratio appear
stretched on the C64, as can be seen in
the original Nintendo port.

Ocean’s 1986 version is closer in appear-
ance to the arcade original, and from a

Donkey Kong

Genre
Released
Code
Graphics
Music
Year

Arcade
Oxyron
Peiselulli
Veto
Linus
2016

A pre-title graphic screen

The presentation screen!

ReGame 64 - Volume #1

26

quick glance at Oxyron’s offering we
could argue theirs is the same except for
the positioning of points and credits.
However, a closer look reveals that the
Oxyron game uses more vertical space
than the other two!

The image with the three versions
merged clearly shows Oxyron’s version
extending beyond the top of the visible
screen. But how?! The programmer Peise-
lulli switches off the vertical borders and
used sprites to portray the upper section
of the building!

Ok, back to the game. When play begins
we are treated with a near-perfect copy of
the original arcade game intro sequence
in which Kong, cradling your (hopefully
unwilling) sweetheart, climbs to the top
of the screen then stomps about to par-

tially collapse the structure. As with the
original we are then taunted with the
message "How high can you get?" before
the rescue begins.

The gameplay will be familiar to anyone
who has played the arcade original. The
animation is fluid as Mario runs, climbs
and jumps over barrels. Surprisingly, the
graphic definitions and colours are not
copied from the original, but reworked in
a typical (and in my opinion, more appro-
priate) C64 style.

This is what Veto said about the graphics
in one of the online forums: "I was think-
ing about adopting the original graphics in
the beginning but, to be honest, I wasn't
really fond ofthat idea - the arcade graph-
ics are designed for a higher resolution and
more [flexibility] with colours. In my opin-

Oxyron version (2016)Nintendo version (1983)

Ocean version (1986) Level 1 from the three games, merged

ReGame 64 - Volume #1

27

ion it is more interesting to follow a more
C64-specific attempt than a graphics down-
grade - which is not unusual by the way.
My graphics are more inspired by the
gameboy version, even though the ape is
typical[ly] me, I'd say..."

There is only one thing left to say: this is
probably the best arcade conversion to
date, and shows how future arcade ports
can be done accurately. Well done boys!

How did you come up with the idea to
make a new conversion of Donkey Kong
superior to the existing ports?

I bought an arcade board called “60in1”.
On this board many arcade classics are
implemented, one of them being "Donkey
Kong". After playing it I felt that this ver-
sion is much more fun than any version
implemented on the C64. As a result, I
thought it might be a good idea to make a

new C64 conversion that contains the
same game logic of the original arcade
game. But how would I do it?! Fortunately
I found the complete documented source
code of the original binary code dump in
an online forum that specialised in Don-
key Kong.

What coding techniques did you use to
implement such an accurate emulation of
the original game engine?

I recognized that it might be necessary to
split up the conversion process into two
main steps.

First, I would convert all the Z80 stuff in-
to 6502 assembler.
Next, I would exchange the original hard-
ware of the arcade board with the C64
hardware.

But how could I check if the first step is
correct and I could start the second one?
That was the point at which MAME came
into play. I patched MAME so that it con-
tinued to emulate the original arcade
hardware but the Z80 CPU was replaced
with a 6502 CPU. This can be done very

Up and up!

I can reach you!

Ahhhhhhhhhhhh!! Bum

Creator's corner: code with Peiselulli

ReGame 64 - Volume #1

28

easily because of MAME’s modular
concept. After that I had my first target
platform, plus a decent debugger.

Then I began converting the code step by
step from Z80 to 6502, by hand. Because
the Z80 has many more registers than the
6502 I decided to replicate those registers
in zero page if used regularly. The abso-
lute addresses of the original code were
replaced with labels, which allow more
flexibility.

Here’s some example Z80 code:
; else we are drawing a ladder
0DF3 3AB263 LD A,(#63B2) ;load A with ?

0DF6 D610 SUB #10 ;subtract #10

0DF8 47 LD B,A ;copy answer B

0DF9 3AAF63 LD A,(#63AF) ;load A with ?

0DFC 80 ADD A,B ;add B

0DFD 32B263 LD (#63B2),A ;store into ?

0E00 3AAF63 LD A,(#63AF) ;load A with ?

computed above

0E03 C6F0 ADD A,#F0 ;add #F0

0E05 2AAB63 LD HL,(#63AB);load HL with

VRAM address to begin drawing

0E08 77 LD (HL),A ;draw element

to screen = girder above top of ladder ?

When converted to 6502 it becomes:
l_0df3:

lax l_63b2 ; load A with ?

sbx #$10 ; subtract #10

stx b
lax l_63af ; load A with ?

clc
adc b ; add B

sta l_63b2 ; store into ?

txa ; load A with ?

computed above (?)

clc
adc #$f0 ; add #F0

ldy l_63ab ; load HL with VRAM address

to begin drawing

sty l
ldy l_63ab+1
sty h
sta (hl),y ; draw element to screen =

girder above top of ladder ?

This was done for approximately 11 ,000
lines of Z80 code.

Eventually I had a version that I could
play on my patched MAME. The handful
of bugs were found very quickly with

MAME’s debugger.

After this, step 2 started.
The first problem was the screen orienta-
tion. On the arcade board the character
matrix is oriented vertically, so each suc-
cessive character address is directly be-
low, not to the right as is with the C64.
There are 32 character rows, so the ad-
dress of a character to the right is ob-
tained by adding 32.

Fortunately I expected this and I had
marked this screen address with a "g":

lda #<g_76d4 ; load HL with screen VRAM

address ?

sta l
lda #>g_76d4
sta h

I had to recalc the hard code address of
$76d4 in the original to:
g_76d4 = v_base + 20*VIDEO_YS +

22*VIDEO_XS

Because there were many labels like this a
script was used to do the recalculation ;-).

This is the way I conditionally assembled
either C64 or MAME:
!ifdef MAME {
VIDEO_XS=$20 ;step for x dir (to left !)

VIDEO_YS=$01 ;step for y dir (down)

} else { ;C64

VIDEO_XS=$01 ;step for x dir (to left !)

VIDEO_YS=$28 ;step for y dir (down)
}

However, code that calculated screen ad-
dresses during the game had be identified
and converted by hand.

The biggest problem of converting to the
C64 was its very limited sprite hardware
compared with that of the arcade version.
This was solved by using a very powerful
sprite multiplexor I developed especially
for the game.

To achieve a better aspect ratio than that
of Ocean’s version you had to open the

ReGame 64 - Volume #1

29

border for more vertical space. Was your
work complicated by this?

Not really. Only that even after opening
the borders the screen was still not high
enough. The arcade game is 32 characters
high and 28 wide. The graphics at the top
are limited - which meant I could only re-
place them with sprites. The graphics
such as the scores were moved to the
right-hand side. The sprite multiplexor
didn’t need to handle the sprites’ $d010
high bit.

What development environment and tools
did you use to code the game? How much
time did it take to code the game?

I used Makefiles, the ACME assembler, the
VICE emulator and the patched MAME for
coding under Linux - nothing special. The
conversion took about 2 years to com-
plete.

How did you feel about working with
Veto (graphic artist) and Linus (musi-
cian)?

I’d previously worked on many demos
with Veto. The most intensive work we
had done together was for the demo
"Coma Light 13" by Oxyron. I‘d also
worked on many other games with Linus,
such as as my Vectrex conversions "Fort-
ress ofNarzod", "Spike", and "Minestorm".

Veto and Linus came in at a very late
stage of the project. At first I had used
graphics converted from those of the ori-
ginal game. These looked dated and quite
monochromatic, but were adequate for
use during development. However, at a
demo party I asked Veto if he wanted to
make some nice graphics for the game -
because at this point in time the game

was almost playable. He sent me some
PNG files and I integrated them with the
game step-by-step. He also had some
ideas for work-arounds to the C64’s hard-
ware limitations; for example, the differ-
ent ladder colors in each stage.

Since the game and new graphics were
almost finished when Linus joined to do
the title music I could tell him how much
memory he could use for it. The original
arcade game lacked a title tune so he
came up with the idea to make a title
track based on "Donkey Kong Country".

Have you any special information or
thoughts about the game that you wish to
share with us?

Perhaps a small anecdote: I played the
game with a trainer enabled and found a
bug on level 22. I fixed it so I could play
later levels. But thanks to some Internet
research I discovered that the level 22
“kill screen” is a very important part of
the game for highscore hunters. So I re-
verted this change to its original state.

The official version has clicking noises on
some hardware configurations. I have
fixed them and I think I will release an
updated version in the near future.

Have you any other games or arcade con-
versions planned for the future?

No, I don't think so. I joined "PriorArt", so
I think I will continue with some really
new developed games in the near future.

ReGame 64 - Volume #1

30

The book of Ivan Venturi

Although there were few Italian soft-
ware houses during the 8-bit era,

one that most Italians will remember is
Simulmondo. The company’s founder
Francesco Carlà was widely recognised
for his game column that appeared in MC
Microcomputer, which for two decades
was the most important IT magazine in
Italy.

Ivan Venturi worked for Simulmondo and
was the creator of many C64 games. He
recently crowd-funded a book of his
memories of that period: "Vita di videogio-
chi - Memorie (a 8 bit)" [Videogame life -
Memory (at 8 bit)] . The book was released
in limited numbers, and in only the Italian
language, so unfortunately few of you
have probably read it. However, what fol-
lows is a short review of the book which
should show you something of the atmo-
sphere of Italy during that time.

In those days it was legal, in Italy at least,
to take a commercial game, simply
change its title (or even, if you were cap-
able, translate it into Italian) and sell it in
newsstand kiosks without giving any roy-
alties to the original authors! Ivan re-
members how one particular teacher from
the University Of Milan and a Bolognese
doctor undertook such activities on an al-
most industrial scale. Ivan had written a
BASIC menu program for the doctor that
would be used for one of the "pirate"
compilation tapes.

Ivan, a talented illustrator and cartoonist,
had the good fortune to learn program-
ming from the computer magazines of
that period, and from his older brother
who would sometimes borrow his friends'

computers. Ivan was able to purchase a
Commodore 64 after being awarded a
scholarship. Soon after he produced a text
adventure called "Fuga da Kreon 3" [“Es-
cape From Kreon 3”] that was shown to
the journalist Francesco Carlà thanks to
their mutual friend Stefan Roda.

Francesco told him about his vision for
Simulmondo games and Ivan, fired with
enthusiasm, began to develop games
written mostly in BASIC with some small
machine code sections. After a few
months he brought his work to Francesco
who took one look at them then loaded
Cauldron II and said, "Unless we can cre-
ate a game like that we won’t get any-
where! " This was a traumatic
disappointment for young Ivan, but it
gave him the impetus to do better. From
that point on he impressed Francesco by
programming in machine code and draw-

Cover of the book

ReGame 64 - Volume #1

31

ing well-defined C64 graph-
ics.

He went on to produce the
first Simulmondo game that
was recognisably Italian: a
traditional bowling simula-
tion (“Simulmondo” can be
translated to English as
"simulate the world").

He was just 17 and this first
game netted him 1000€ - a
considerable sum of money
back then. Another 250€
was earned for a Tombola (Bingo) simula-
tion written in just one month. His next
two games were also sports simulations,
golf followed by soccer, which was re-
leased in time for the 1990 FIFA World
Cup, hosted in Italy. It took Ivan one and
a half months (instead of the planned
five), often working 18 to 20 hours each
day to get it ready before Christmas.

Although Francesco had given him a 16-
bit Amiga computer Ivan decided to con-
centrate on pushing the 8-bit C64 to its
limits rather than learn an entirely new
computer architecture.

F1 Manager was Ivan’s next major pro-
ject. This simulation was five times the
size of Italian Soccer but he had a six-
month timeframe to complete it before he
entered compulsory military service later
that year. Then, disaster! The duplicator
manufactured an initial batch of 6,000
tapes, but when Simulmondo received
them it was discovered that a recording
error caused the game to fail to read at
datasette counter's 27th position!

By that time Ivan was doing his military
service, but thanks to his ability to draw

portraits for his comrades
he was able to have a
private area in the bar-
racks where he used his
C64 to work on the
graphics for a motocross
simulation. When he re-
turned to Simulmondo he
gradually moved away
from programming into
C64 graphics - due to the
company having no one
else available for that task.
After that he held the po-
sition of Technical Man-

ager until he left Simulmondo.

This is a book that will draw you into a
past world of fond memories and which
you will not put down until the final
page. Regretfully, it is only those who can
read Italian who will be able to enjoy it.

I wish to thank Ivan for giving me one of
his personal copies of his book when he
learned I’d missed the crowd-funding
campaign. For those of you interested in
obtaining a copy, he is taking pre-orders
for the next reprint.

As this printed volume of ReGame 64 is possible
only with your contribution we’ve decided to give you
a PDF version for your personal use. Use the QR
code below to download the PDF to your tablet or
other portable device (user REGAME1, password
BSJR67DF).

Dedicated to me..

ReGame 64 - Volume #1

32

GRAPHIC PIXEL ART

duce: "Truly didn't expect to win a thing with this piece..."
ptoing: "originally I started a new MCOL pic for X, but then stumbled over this pic I started in
2009 I think. It was nowhere close to being finished, but the general feel/vibe was there and I
really wanted to see what Asslace looks like on the bigscreen."
Electric: "Not really into NUFLI. I like the crispiness of hires and the limitations of it, Petscii's as
well. There's more challenge and they present more 'the core' of C64 to me… of course they don't

"Song of the dead" by Duce
HIRES + SPRITES - 2016

"Them Apples" by ptoing
MCI (Multicolor Interlace) - 2016

"No Shit" by Mermaid & redcrab
Multicolor + SPRITES - 2016

"Winter is Coming" by Yazoo
Multicolor - 2016

"Snoopy Hires" by Electric
HIRES - 2016

"The Scarabeus Queen" by Leon
IFLI (Interlace FLI) - 2016

ReGame 64 - Volume #1

33

eat that much memory either – optimizing is never too oldskool. If I like to do something realistic
I rather do it on paper."
Yazoo: "I love to use the built-in modes (have to try hires a bit more sometime - still) - as this is
most appealing to me. for me it's the maximum of fun to try and see what i can do in the
multicolor mode. if i want a higher resolution or more colors, i'd probably go and do amiga
pixeling :-) so usage of nufli is for 99,9% never gonna happen here. I may someday try another
mode like afli probably just to have it done at once (or good old FLI) - but most of my pictures
will still be multicolor forever i guess :-)"
amoeba: "This picture is an experiment in using the color clashing of the multicolor mode for

"Snuggery" by Sphinx
Multicolor - 2016

"We Are All Ejected" by Archmage
PETSCII - 2016

"Concerto" by DeeKay
NUFLI - 2016

"BOSSE" by redcrab
PETSCII - 2016

"One Second Demo" by Jok
Multicolor + SPRITES - 2016

"More is More" by Aomeba
Multicolor - 2016

ReGame 64 - Volume #1

34

good. The background is done by spraying and filling over and over again in various patterns,
causing color clashes and interesting looking crap on the picture. After this, some manua fixing
was done."
Archmage: "Dedicated to those who have worked for the facilitation of tape dumping on the C64:
SLC, Luigi and Enthusi to name a few."
Duce: "Done back in Feb 2011 and supposed to have some sprites at top border as well."
DeeKay: A NUFLI hires remake of STE'86's Commando Titlepic, Used in Concert (hence the
changed logo!), entered into the GFX compo...
Carrion: "This pic is not finished but I wanted to participate in the compo so much (felt like I

promised it to Jazzcat) so here you have the

"Alice in bondage" by Joe
Multicolor scroller - 2016

"Sweet-Smorky Dreams" by Leon
IFLI (Interlaced FLI) - 2016

"Searching..." by Leon
MCI (Multicolor Interlace) - 2016

"Sail to the King, Baby" by Bitbreaker
Advanced FLI - 2016

ReGame 64 - Volume #1

35

result. I started real pixeling 2 days before compo and some ideas and sketching on tuesday. It's
the fastest drawn pic by me so far ;) I knew it will be not perfect so as a bonus I decided to go
with sprites and top/bottom border (for the first time) and I think I will exploit these areas more.
It was so fun anyway to see how this picture grows during the pixeling process that at the end I'm
happy I've done it. Even though it looks like a compo filler ;)"
Mermaid [Test Flight] : "Evolved from an MSX-1 picture that I made a few years ago."
Leon [Searching] : "No Copy! (check the concept picture...)" [Sweet-Smorky freams] : "This is based
on a photo image. OWN lighting, OWN concept, OWN camera, My photos, OWN items and
supplies Own compositions, OWN ideas and My girlfriend!"

"Take This Life Energy" by Carrion
Multicolor + SPRITES - 2016

"Breakfast of Champions" by iLKke
PETSCII - 2016

"Giantesses" by Animal Bro
Multicolor - 2016

"Coral Reef" by Shine
PETSCII - 2016

"Arriving Somewhere But Not Here" by Duce
NUFLI - 2016

"Test Flight" by Mermaid
Advanced FLI - 2016

ReGame 64 - Volume #1

36

Limbo is a puzzle-based platform game
by Playdaed released exclusively for

the XBox in 2010, and later made avail-
able for other systems including PC and
PlayStation.
In this game you play a boy who has
woken in a dark forest. You set out to find
your sister who has become lost some-
where in this dangerous, mysterious and
colourless world.

But, why am I telling you about this
game? Simple - one
of the game’s ori-
ginal authors, Søren
Trautner Madsen,
already well-known
in the C64 scene,
has received per-
mission to port it to
the Commodore 64.
He has already pro-
duced a proof-of-
concept video which
can be seen on You-
Tube! Okay? so listen carefully:

In the video we see a static screen with a
dark color scheme in which the silhouette
of a boy runs, jumps and climbs about the
landscape just as in the original game. It’s
a video best described as “Twenty-one
seconds of ‘WEWANTITFINISHED!’”

But can Limbo actually be ported to the
Commodore 64? It’s a valid question so
we will try to analyse the possible scen-
arios, since, unfortunately, Søren has
spoken no further about this project.
From the demo we can see that dark am-
bient imagery can be created effectively
using the C64’s limited palette, and anim-

ated objects can be rendered accurately
with mono-colour sprites. The original
game’s sound is restricted to ambient ef-
fects which maintain its atmosphere of
unrelenting horror. The C64’s sophistic-
ated SID can easily recreate such effects.

The puzzles are solved using objects,
gravity and machines. To make the inter-
actions realistic the game uses a physics
engine - which will be a problem for the
less powerful C64. It’s possible the game

could use custom
code for each puzzle
rather than a gener-
alised engine. A
scrolling screen like
in the original is
also unlikely due to
performance issues
from combining
physics with full-
screen scrolling.

The game has many
large moving structures and full-screen
rotation. Even multiplexed sprites may be
insufficient to recreate such objects. Dy-
namic character-sets could be useful here,
but would make development of the game
an even more complex undertaking. So
the question remains: is Limbo on the C64
even possible?

I think yes. If the atmosphere of the game
is recreated then the nature of the puzzles
can be reduced to a degree the C64 can
manage. Scrolling levels or
sections thereof could be
made static where neces-
sary. So for now, we’ll just
have to wait and see...

LIMBO (?)

Limbo on C64 (preview)

ReGame 64 - Volume #1

37

B ack in 2003 I began writing a column
for SID related topics for ReLoad - an

Italian paper magazine for the C64. The
column used the same title, SIDin, as my
own PDF magazine that I’ve been produ-
cing since 2002. ReLoad had about 42
black-and-white pages and a color cover,
probably printed in-house by its owner.

Unfortunately just two issues were pro-
duced! I liked the idea behind that
magazine so much that in 2007 I began to
create my own magazine focused on
games and graphics. It has the same A5
format as ReLoad, but the pages were de-
signed with colour in mind, and a website
was created to accompany it.

My magazine was named ReGame be-
cause it was intended to show games of
the past and encourage people to play
games again on the Commodore 64. But
showing only old games was not enough,
so I decided the magazine would also cov-
er the best images ever pixelled on our fa-
vourite 8-bit computer.

So I used GIMP, Inks-
cape and Scribus to be-
gin making the magazine
- but my PC hardware at
that time was simply not
enough. It took 20
minutes to load the
magazine in Scribus then
another 20 minutes to
save the changes (it was
like using a Commodore
Datasette!). In the end I
had to shelve the project
until the situation im-
proved.

But during that same period the last is-
sues of Game Over(view) were pub-
lished. This was a C64 disk magazine that
focused on new C64 games being created
at that time. That idea was a good one,
and because of the increasing number of
new commercial game releases I realised
that approach should be the model for the
soon-to-be-reborn ReGame.

Another magazine that
helped in this decision
was Commodore Free,
an excellent digital pub-
lication still produced to
this day and featuring
many interviews with
people related to the
programming and demo
scene. But I wanted a
magazine with that kind
of content on paper...

So, back to the very re-
cent past, there were two
items that encouraged
the birth of ReGame:

ADDENDUM

ReGame collage

ReLoad magazine

ReGame 64 - Volume #1

38

Reset 64 Magazine and the fanzine
Freeze64. I received a specially printed is-
sue ofReset 64 (issue 8.5) as a stretch goal
for the Kickstarter project “The Story Of
Commodore 64 In Pixels”. For me, the pa-
per version is more valuable than the PDF
version. Reset 64 usually has 20 copies
printed, distributed on a first come-first
served basis, with everyone else receiving
the PDF version. It is a pity not everyone
gets a printed copy. Paper is paper...

On the other hand, Freeze64 is a printed
fanzine devoted to gaming cheats (as was
common in the old days), new games in
production, special interviews, game
secrets, game endings and more. It is cre-
ated by Vinny and you should never miss
an issue of this high quality product. It is
a pure diamond that you must have on
your desk, believe me!

With those last examples in mind,
ReGame 64 is now a reality - but as a
book, not a magazine! This may seem odd

but it is the only valid way to release it in
Italy, even if it is a not-for-profit product!
So it will be a book minus an ISBN num-
ber (to reduce costs). It will produced as
volumes, each with a preface, chapters
and bibliography - just like a book. A
good one.

As you can see, I want to give a lot of
space to the coders, artists and musicians
who created the games reviewed in the
book. This is by choice, and will be the
hallmark of this publication.

ReGame 64 will also showcase the
pixelled artwork of the best C64 graphic
artists. When I first started planning this
publication I intended that they and their
work should receive special attention.
Additionally, relevant information and
public comments from Commodore Scene
Database (CSDB) will be reported here.

The front cover of the book is presented
in the style of a noticeboard on which are

pinned artistic reproductions of
the main themes of the reviewed
games. This is an evolutionary
step up from the original
ReGame cover which used vec-
torised images of the original 8-
bit game graphics.
The back cover of each volume
will be reserved exclusively for
an artist’s fantasy composition
of one of the games featured in-
side.

Freeze64 Fanzine

ReGame 64 - Volume #1

39

Caren and the Tangled Tentacles
http://martinwendt.de/caren/
http://facebook.com/carengame (accessible for everyone)

Let's Invade!
http://csdb.dk/release/?id=151230

Donkey Kong 2016
http://csdb.dk/release/?id=151272

Commodore Free
http://www.commodorefree.com/

Game Over(view)
http://csdb.dk/group/?id=4725

Freeze64 Fanzine
http://freeze64.co.uk/

Reset64
http://reset.cbm8bit.com/

Limbo
https://www.youtube.com/watch?v=4FOOeEV36c4

BIBLIOGRAPHY

Aomeba
Animal Bro
Archmage
Bitbreaker
Carrion
DeeKay
Duce
Electric
iLKke
Joe
Jok
Leon
Mermaid
ptoing
redcrab
Shine
Sphinx
Yazoo

http://csdb.dk/scener/?id=320
http://csdb.dk/scener/?id=26948
http://csdb.dk/scener/?id=14268
http://csdb.dk/scener/?id=1678
http://csdb.dk/scener/?id=501
http://csdb.dk/scener/?id=8058
http://csdb.dk/scener/?id=8065
http://csdb.dk/scener/?id=8064
http://csdb.dk/scener/?id=24107
http://csdb.dk/scener/?id=1672
http://csdb.dk/scener/?id=5870
http://csdb.dk/scener/?id=1373
http://csdb.dk/scener/?id=19
http://csdb.dk/scener/?id=11032
http://csdb.dk/scener/?id=22995
http://csdb.dk/scener/?id=24193
http://csdb.dk/scener/?id=16048
http://csdb.dk/scener/?id=1127

