

BASIC LIGHTNING
by OASIS SOFTWARE

BASIC LIGHTNING
by OASIS SOFTWARE

Copyright Notice

Copyright © by Oasis Software. No p a r t of t h i s manual may be reproduced on any
media without p r i o r wr i t ten permission from Oasis Software.

This Manual

Piracy has reached epidemic proportions and it is with regret that we are forced
to reproduce this manual in a form which cannot be photocopied. Our apologies for
the inconvenience this may cause to our genuine customers. A reward will be paid
for information leading to the successful prosecution of parties infringing this
Copyright Notice.

NOTE

This manual i s e s s e n t i a l for the use of Machine Lightning. For t h i s reason we
would warn custcmers to look a f t e r i t very c a r e f u l l y , as separa te manuals w i l l not
be issued under any circumstances whatsoever.

Copyright © by Oasis Sof tware

® Commodore is the Trade Mark of Commodore Business Machines Ltd.

CONTENTS

INTRODUCTION 1

LOADING BASIC LIGHTNING 1

1. STRUCTURED PROGRAMMING 1
IF-THEN-ELSE 2
CIF-CELSE-CEND 2
Labels 3
REPEAT-UNTIL 3
WHILE-WEND 4
EXIT 4
CASE-OF-CASEND 5
Procedures 5
Var Parameters 7
Arrays as Parameters 7
Multiple-Line Functions 8

2. MISCELLANEOUS KEYWORDS 9
Hexadecimal Numbers 9
DEEK and DOKE 9
DLOAD and DSAVE 9
PULL 9
PI 9
DIR 9
OLD 10

3. GRAPHICS COMMANDS 10
Sprite Variables 10
Sprite Utilities 11
Saving and Loading Sprites 11
Display Modes 12
Setting the Attribute Value 12
PAPER, BORDER and INK Colours 13
PLOT, BOX, DRAW, POLY and POINT 13
Sprite Data Movement Commands 15
One-Way Data Movement 16
Two-Way Data Movement 18
Moving Attributes 18
Collision Detection 19
Clearing and Inverting Windows 19
Scrolling Commands 20
Sprite Transformations 21
Character Manipulation 22
Reading the Keyboard 23
Reading the Joysticks 24
Reading the Lightpen 24
Defining a Hardware Sprite 25
Switching on a Hardware Sprite 25
Placing a Sprite on the Screen 26
Double-Sized Sprites 26
Multi-Coloured Sprites 26
Display Priorities 27
Hardware Sprites Collision Detection 27
Smooth Scrolling 27

4. SOUND COMMANDS 27
V3L, FREQ, Envelope, Waveform 28
Fig.4 - Envelope 28
Fig.5 - Sawtooth 29
Fig.6 - Triangle 29
Fig.7 - Pulse 29
Filtering 30
Ring Modulation and Synchronisation 31
MUTE, OSC and ENV 33

5. MULTI-TASKING 33
Error Messages and I/O 34
Passing Values between Tasks 34
Allocation of Scrolling Buffers 34

6. THE SPRITE GENERATOR PROGRAM 35
Introduction 35
Glossary of Terms 35
The Function Keys 36
MODE:l 37
MODE:2 39
MODE:3 40
MODE:4 42
MODE:5 45
A Sample Session with the Generator 46
Function Key Sunmary 52

APPENDIX A - BASIC LIGHTNING COMMAND SUMMARY 56
Structure Programming and Misc. Commands 56
Sound and Graphics Commands 62

APPENDIX B - BASIC LIGHTNING TOKENS 74

APPENDIX C - SPRITE STORAGE FORMAT 77

APPENDIX D - GLOSSARY OF TERMS 78

APPENDIX E - SCREEN DISPLAY CODES 80

APPENDIX F - ASCII AND CHR$ CODES 81

APPENDIX G - BASIC LIGHTNING MEMORY MAP 82

APPENDIX H - ERROR MESSAGES 82

APPENDIX I - THE ARCADE SPRITE LIBRARY 83

APPENDIX J - CASSETTE STORAGE 84

APPENDIX K - RUNNING THE DEMO 84

APPENDIX L - INTERRUPT DRIVEN COMMANDS 85

APPENDIX M - TABLE OF FREQUENCIES 87

BASIC LIGHTNING

User Manual
by David Hunter

INTRODUCTION

BASIC LIGHTNING is an extension to the CBM64's resident BASIC interpreter which
adds over 150 ccmmands. The additional ccmmands cover three main areas:
structured programming, graphics and sound. One of BASIC LIGHTNING'S most
powerful features is the ability to multi-task; up to five parts of a BASIC
program can be run at once. A compiler for BASIC LIGHTNING will be available in
early 1985 which will produce "stand-alone" compiled programs which can be
marketed without paying royalties.

The structured programming ccmmands included in BASIC LIGHTNING include all the
control ccmmands found in PASCAL. This includes multiple-line IF-THEN-ELSE,
REPEAT-UNTIL, WHILE-WEND as well as PROCEDURES with full parameter passing
(including arrays), multiple-line functions and CASE-OF.

The sound and graphics ccmmands included are the same as those in WHITE LIGHTNING,
adapted to BASIC syntax, and include ccmmands to plot points, draw lines, move
software sprites to and frcm the screen, scroll blocks of the screen or sprites
with character or pixel resolution, rotate, invert or mirror sprites or screen
windows and exchange sprites with parts of the screen. You can also make use of
the 64's inbuilt hardware sprites and it is possible to redefine the 64's
character set.

To use this manual, it is essential that you already understand how to program
using the 64's resident BASIC interpreter.

LOADING BASIC LIGHTNING

To load BASIC LIGHTNING frcm tape, type shift-run/stop and start the tape in the
normal way. To load it frcm disk, type LOAD "BL",8,1.

1. STRUCTURED PROGRAMMING

The structured programming ccmmands provided will allow you to program without
using the "GOTO" statement and should result in programs which are easier to
understand and modify.

Before proceeding, please note that commas are used in the LIST command instead of
minus signs: for example, use LIST 100,200 instead of LIST 100-200. Also,
keywords are no longer abbreviated using the shift key. Instead, a full stop is
used. For example, "LIST" is abbreviated to "LI." not "L shift I". A list of
all the keywords and abbreviations can be found in Appendix B.

1

Also, you can temporarily halt a listing by using the spacebar - press it again to
re-start.

IF-THEN-ELSE

This is a simple extension to the existing IF-THEN statement. If the condition is
true, the statements between THEN and ELSE are executed, otherwise the statements
from the ELSE until the end of the line are executed. The ELSE can, of course, be
emitted.

Putting more than one IF-THEN-ELSE on a line is allowed, for example:

IF a THEN PRINT 1 ELSE IF b THEN PRINT 2 ELSE PRINT 3

1 is printed if 'a' is true, irrespective of the value of 'b'.
2 is printed if 'a' is false and 'b' is true.
3 is printed if 'a' is false and 'b1 is false.

However, the following is ambiguous:

IF a THEN IF b PRINT 1 ELSE PRINT 2

1 is printed if 'a' is true and 'b' is true.
2 is printed if 'a' is true and 'b' is false.

- the ELSE statement is assumed to belong to the most recent IF.

The THEN can be omitted if it is directly followed by a command (rather than an
assignment), e.g.

IF 1=6 PRINT "UNDEFINED"

CIF-CELSE-CEND

This is a more general version of IF-THEN-ELSE: it can be spread over any number
of lines. The CIF is equivalent to IF, CELSE is equivalent to ELSE and CEND is
used to mark the end of the statement. CIF, CELSE and CEND are separated from
other statements by colons if more than one statement is put on the line.

Example:

100 LABEL stcheck 'subroutine to check ST
110 '
120 CIF stOO
130 OPEN 15,8,15
140 INPUT#15,w$,x$,y$,z$
150 PRINT w$;",";x$;",";y$;",";z$
160 er=l
170 CLOSE 15
180 CELSE
190 er=0
200 CEND
210 RETURN

If you have typed in any of the examples so far, you will have noticed that all
reserved words are printed in upper case when listing, and everything else is
printed in lower case. This makes the program easier to read, particularly if
many statements are put on one line without any spaces.

2

In the above listing, you will also see that indentation of two spaces has been
used for statements inside the CIF-CEND. This makes it possible to see at a
glance what the structure of a program is, although it uses up a lot of memory.
Also, single quotes have been used for on-line carmenting. A single quote is
equivalent to ":REM". There is a LABEL statement in line 100 - this is dealt with
next.

LABELS

The use of labels enables subroutines and data to be given symbolic names rather
than being referenced by meaningless line numbers.

A label is defined by using the LABEL statement - for an example, look at the
previous listing. The subroutine in that example would be called using "GOSUB
stcheck".

The label itself must start with a letter, the rest of it consisting of letters,
numbers, "$" and "%" signs. For example, the following are all legal labels:

z9 grid3% i3vl v$62

Unlike ordinary variables, all the characters are significant, not just the first
two. Also, there is no restriction on the use of reserved words in labels; it
would be perfectly legal to define a label called 'print' or 'teletype' for
example. There is one exception to this rule; 'ELSE' cannot be included.

The RESTORE command has been extended so that it can be used with a line number or
label. Also, ON-RESTORE can be used in the same way as ON-GOTO or ON-QOSUB.

Example:

10 INPUT "Skill level (1,2 or 3)";i
20 ON i RESTORE bl,wl,ml
30 READ a$
40 PRINT "loading ";a$;"..."
50 READ b$
60 LOAD b$,8,l
70 LABEL bl:DATA "basic lightning","bl"
80 LABEL wl:DATA "white lightning","wl"
90 LABEL ml:DATA "machine lightning","ml"

Labels are also used to define procedures and multiple-line functions; this is
explained fully later.

REPEAT-UNTIL

REPEAT and UNTIL are used to set up a loop where it is required to repeat a set of
statements at least once. The REPEAT command is put at the top of the loop, and
the UNTIL is at the bottom of the loop. Every time the UNTIL is encountered, the
expression after it is evaluated, and if it gives a FALSE value, the computer goes
back to the corresponding REPEAT and starts the loop again.

To see how this works, type in the following and run it:

10 REPEAT
20 INPUT "4-charac te r code";a$
30 UNTIL LEN(a$)=4

The computer will keep prompting for the string a$ until you type in a string of
the correct length - four characters.

WHILE-WEND

WHILE and WEND are used to set up a loop where it is required to repeat a set of
statements zero or more times. This is quite similar to the REPEAT-UNTIL loop;
however, the test for exiting the loop is made at the top, not the bottom.
Therefore, if the condition is not met when first entering the loop, it will not
be executed at all.

Try running this program:

10 INPUT x$
20 WHILE x$<>""
30 PRINT x$
40 x$=RIGHT$(x$,LEN(x$)-l)
50 WEND
60 PRINT
70 PRINT" * * * end * * * "

If you type in "while-wend", the following will be printed:

while-wend
hile-wend
ile-wend
le-wend
e-wend
-wend
wend
end
nd
d

"k ic ~k £nrj k it ic

However, if you type in a null string (two quotes and RETURN), you will see that
the loop itself is not executed at all since x$<>"" gives a FALSE value the first
time around.

Since TRUE and FALSE return values of -1 and 0 respectively, it is possible to set
up an infinite loop using:

REPEAT UNTIL FALSE
or WHILE TRUE WEND

EXIT

Sometimes it is convenient to exit from a loop prematurely, and the EXIT command
is provided to do this. For example, let's look at the example that was used
before for the REPEAT-UNTIL loop:

10 REPEAT
20 INPUT "4-character code";a$
30 UNTIL LEN(a$)=4

Suppose that we want to give an error message if the code is not 4 characters
long:

10 REPEAT
20 INPUT "4-character code";a$
25 IF LEN(a$)<>4 PRINT "4 characters please - try again"
30 UNTIL LEN(a$)=4

This could be more efficiently coded using EXIT, since in the above, the test for
the correct length of a$ has to be made twice:

10 REPEAT
20 INPUT "4-character ccde";a$
25 IF LEN(a$)=4 EXIT
27 PRINT "4 characters please - try again"
30 UNTIL FALSE

If the loop conditions are more complex, EXIT can save a lot of re-typing. EXIT
can also be used to leave WHILE-WEND and FOR-NEXT loops.

NOTE: It is not advisable to jump out of a loop using a GOTO statement as this
corrupts the stack and may cause error messages later in the program.

CASE-OF-CASEND

The CASE statement is used to select between a number of alternative courses of
action, depending on the value of a variable which may be either numerical or
string.

The CASE is used at the top of the statement and is followed by the variable to be
tested. After each OF there is a list of values, separated by commas. If the
variable being tested is equal to one of these expressions, the code up until the
next OF or CASEND is executed, otherwise it is ignored. The CASEND is put at the
end of the CASE statement. "OF OR" is interpreted as an instruction to execute
the following code if none of the statements so far have been executed.

Example:

10 INPUT a
20 CASE a
30 OF 3:PRINT "Three French hens,"
40 OF 2,3:PRINT "Two turtle doves,"
50 OF 1,2,3:PRINT "And a partridge in a pear tree."
60 OF OR : STOP
70 CASEND

PROCEDURES

Procedures, like subroutines, are sections of code which are used several times in
a program. However, they are much more powerful than subroutines because it is
possible to pass parameters to them.

5

Clear the memory using NEW, then type in the following:

10 LABEL test(i)
20 LOCAL j
30 FDR j=l to i
40 PRINTj;
50 NEXTj
60 PRINT
70 PROCEND

(the computer will automatically convert the keywords to upper case).

Now type " proctest(lO) ", and 1 2 3 4 5 6 7 8 9 10 is printed.

The "10" in proctest(lO) is called an actual parameter, and the variable i is
called the formal parameter. When the procedure is called, the formal parameter
is made equal to the actual parameter, and the body of the procedure is executed.
All formal parameters are local to the procedure - this means that they are
separate from any variables of the same name that are used in the rest of the
program. It is also possible to create additional local variables for use within
a procedure using the LOCAL command, as in line 20. If there is a variable called
j in the main program, it will not be altered by the procedure because j is local.
To prove this, type the following:

for j=l to 12 : proctest(j) : next

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12

As you can see, the two variable j's are separate and do not interfere with one
another.

Parameter passing is not restricted to reals - integers and strings can be passed
as well. Any expression can be used as an actual parameter.

To illustrate passing strings as parameters, type in the following procedure:

100 LABEL centre (a$,i)
110 PRINT@0,i;" " '40 spaces
120 PRINT@20 - LEN(a$)/2,i;a$
130 PROCEND

Note that this procedure has two parameters instead of one as in the previous
example - the number of parameters a procedure can have is only limited by the
maximum line length of 80 characters.

In lines 110 and 120, PRINTS is used: PRINT@X,Y; will position the cursor on
screen column X and row Y before printing the data following it.

6

Type 'proccentre ("basic lightning",10)', and "basic lightning" will be printed on
the middle of the tenth line of the screen.

The LOCAL command can be used to create more than one variable by separating the
names by commas. Local integers and strings can be defined also, and if more
variables are required than can fit on one line, several LOCAL commands can be
used on separate consecutive lines. LOCAL, if used, is normally the first command
in the procedure.

VAR Parameters

In the examples you have seen so far, none of the procedures have had to alter any
of the actual parameters. Indeed, you will find that if you modify any of the
previous examples so that a formal parameter is changed inside the procedure, the
corresponding actual parameter will remain unaltered.

If a procedure is to modify any of its parameters, they must be declared as VAR
parameters in the procedure heading, like this:

100 LABEL inp(A$,VAR B$)
110 PRINT@0,10;a$;
120 LNPUTb$
130 PRINT@0,10;" " '40 spaces
140 PROCEND

Now clear the screen using SHIFT-CLR and type:

PROCinp ("Name",x$)

The computer will execute the procedure "inp" and input a string from the
keyboard. After this, if you type ?x$ you will see that x$ is equal to what you
typed in, i.e. the formal parameter b$ was altered inside the procedure and this
has resulted in x$ being changed as well.

Note that if a parameter is declared in a procedure as a VAR parameter, the
corresponding actual parameter must be a variable name, not an expression. Also,
you are not allowed to pass single elements of arrays as VAR parameters.

Arrays as Parameters

You can also pass whole arrays as parameters to procedures, although they must be
declared as VAR parameters. Also, an actual parameter array must have been
DIMensioned before calling the procedure, even if its dimensions are less than the
default value of 10.

When arrays are passed as parameters to procedures, we often do not know what the
size of the array will be when writing the procedure. For this reason, the SIZE
function is provided in BASIC LIGHTNING. For example, type in the following:

DIM x(10,20)

Now, SIZE(x,0) will give a value of 2, the number of dimensions. SIZE(x,l) gives
21, the second dimension + 1 and SIZE(x,2) gives 11, the first dimension + 1.

Here is a simple program which illustrates the use of arrays as parameters:

7

10 INPUT n
20 DIM aS(n)
30 PROC enter(a$())
40 PROC sort(a$())
50 PROC out(a$())
60 END
70 '
80 LABEL enter (VAR x$())
90 LOCAL i
100 FOR i=l TO SIZE (x$,l)-l
110 INPUT x$(i)
120 NEXT i
130 PROCEND
140 '
150 LABEL sort (VAR y$())
160 LOCAL i,j,k$
170 REPEAT
180 j=TRUE
190 FOR i=l TO SIZE (y$,l)-2
200 CIF y$ (i) > y$(i+l)
210 k$=y$(i)
220 y$(i)=y$(i+l)
230 y$(i+l)=k$
240 j=FALSE
250 CEND
260 NEXT i
270 UNTIL j
280 PROCEND
290 '
300 LABEL out (VAR z$())
310 LOCAL i
320 FOR i=l TO SIZE (z$,l)-l
330 PRINT z$(i),
340 NEXT i
350 PROCEND

'get number of records

'get records
'sort
'and print

'swap two elements
'if out of sequence

'until elements in order

MULTIPLE-LINE FUNCTIONS

Multiple-line functions are similar to procedures, the difference being that they
return a value; the end of the function is an "=" sign followed by the value to be
returned. To call the function, the keyword "CFN" is followed by the label name
and the parameters inside brackets, as with procedures. As an example, here is a
function to calculate the factorial of a number:

10 LABEL fact(n)
20 LOCAL i,j
30 i=l
40 CIF n>l
50 FOR j=2 TO n
60 i=i*j
70 NEXT j
80 CEND
90 = i

When this has been typed in, CFNfact(i) will return the factorial of a number.
For example, ?CFNfact(4) will print '24'.

8

2. MISCELLANEOUS KEYWORDS

Hexadecimal Numbers

Hexadecimal numbers can be used in express ions by preceding them with a ' $ ' s ign .
For example:

? $9800/2

will give a result of 19456.

It is also possible to convert a numerical result into hex using the string
function HEX$, e.g. ? HEX$ (19456) will give $4C00. The string is always five
characters long - the '$' plus four digits. The number being converted must be in
the range 0 to 65535.

DEEK and DOKE

These are similar to PEEK and POKE, but they operate on two bytes at once instead
of one only, using the usual 6502 low byte/high byte order.

DEEK returns a value between 0 and 65535; for example ? DEEK (65532) will give the
same result as ? PEEK (65532) + 256 * PEEK (65533).

DOKE $C000,$55FF is equivalent to POKE $C000,$FF : POKE $C001,$55.

DISABLE can be used to disable the STOP key. This will only work if it is
included in a program since it is automatically re-enabled every time you type in
a line in immediate (or "cattnand") mode. There is no way to break out of a
program once this command has been used, unless an error occurs.

DLOAD and DSAVE

These are very similar to IOAD and SAVE, but they assume that you are using a disk
drive (device No. 8) rather than a tape recorder (device No. 1).

Example: DIDAD "SPIGEN"

PULL

This command removes the return line number put on the stack by GOSUB from the
stack. It is useful in menu-driven programs where it is required to move back to
a higher level menu, in which case the subroutine to do this would be
PULL:RETURN.

PI

PI is a reserved word which will return the value 3.14159265.

DIR

If you have a disk drive, DIR can be used to print out the disk directory. As
with LOAD or SAVE, the filename and device number can be specified; DIR"$0:O*",9
would print out all filenames on device number 9 which start with "0". For
further details, refer to your disk drive manual.

9

OLD

This catmand will attempt to restore a program which has been NEWed. If you have
typed in program lines or created new variables since typing NEW, it will not be
successful.

3. GRAPHICS COMMANDS

The graphics commands included in BASIC LIGHTNING are designed to allow easy
manipulation of images on and off the screen. This is achieved by carrying out
operations on a table of sprites which can initially hold up to 8k of data. In
this context, "sprite" means a graphics character of user-definable dimensions (up
to 255 characters height or width) which may be displayed on the screen in one of
the high-resolution modes (either bit-map mode or multi-colour bit-map mcde).
This is not to be confused with the 64' s own hardware sprites - these can also be
used from BASIC LIGHTNING and will be dealt with later.

Each sprite in the table is given a number frcm 1 to 255, and the screen is
treated as sprite number zero - thus, the same commands can be used for both the
screen and the sprites.

SPRITE VARIABLES

The sprite graphics commands in BASIC LIGHTNING use thirteen variables to pass
parameters. The variables are:

SPN
COL
ROW
WID
HGT
SPN2
COL 2
R0W2
NUM
INC
ATR
CCOL
CROW

sprite no. 1
column in sprite no. 1
row in sprite no. 1
width of window
height of window
sprite no. 2
column in sprite no. 2
row in sprite no. 2
number of sides on polygon or number of pixels to scroll
inclination of polygon
current attribute
column for collision detection
row for collision detection

(The way that these variables are used will become clear later).

They can be treated like normal variables; i.e. they can be assigned a value:

SPN = 3 (Don't use let)

or used in expressions:

PRINT SPN-1

Most of the graphics commands can be used either with or without the parameters
after them. For example, the command WCLR uses SPN, COL, ROW, WID and HGT as
parameters. Thus WCLR 0,8,8,4,4 is equivalent to :

SPN=0:COL=8:ROW=8:WID=4:HGT=4:WCLR

10

The commands which can be used withiut parameters in this way are marked with an
asterisc in appendix A, part 2. Note that putting parameters after a command will
still alter the variables. The first sprite commands that we will look at are
RESET, SPRITE and WIPE, which are used to create and delete sprites in the table.

SPRITE UTILITIES

RESET has no parameters, and it simply removes all the sprites from the table.

SPRITE SPN,WID,HGT creates a new sprite in the table with number SPN, width WID
and height HGT character blocks. All the data in the sprite is cleared when it is
created. For example, SPRITE 1,16,16 would create space for a sprite number 1, 16
character blocks square. Each character block in the sprite takes up ten bytes -
eight bytes for the pixel data, one byte for the primary attribute data and one
byte for the secondary attribute data. (The attributes determine what colour the
pixel data will be displayed in - only the primary attributes are used when in
two-colour mode). Also, there is an overhead of seven bytes for each sprite.

WIPE will remove sprite no. SPN from the table, releasing the space for new
sprites. Note that trying to delete a sprite which doesn't exist will give an
error message, and you are not allowed to delete sprite no. zero, the screen.
Also, you cannot create a new sprite using SPRITE if a sprite with that number
already exists.

DFA(SPN), AFA(SPN) and AFA2(SPN) are functions which return the starting addresses
of the pixel data, the primary attribute data and the secondary attribute data of
sprite SPN respectively. They also set WID and HGT to the size of the sprite. If
a sprite is undefined, they return values of -1. So a procedure to delete a
sprite without giving an error if it doesn't exist is:

100 LABELdelete(sprnum)
110 IF DFA(sprnum) >-l WIPE sprnum
120 PROCEND

Since the hi-res screen is "hidden" under the KERNAL RCM, you cannot read data
from them directly using PEEK.

SAVING and LOADING Sprites

The command STORE saves the sprites currently in memory to tape. To save sprites
to tape, use 'STORE' or 'STORE "filename"'. To save sprites to disk, use 'DSTORE
"filename"'. As with SAVE, a device number can follow the filename so that you
can use more than one disk drive.

Sprites can be loaded using 'RECALL' or 'RECALL "filename"' for tape, and 'DRECALL
"filename"1 for disk.

RECALL will overwrite any sprites that are already in memory - if you want to keep
the sprites that are already there, you must use the MERGE command which has the
same syntax as RECALL. There is also an equivalent command for disk - DMERGE.

Note that there is nothing to stop you from loading in more sprite data than there
is room for in memory - this will overwrite the character memory and cause a
"CORRUPTED SPRITE" error, so be careful!

11

Although only 8192 bytes are available for sprites after you load BASIC LIGHTNING,
you can have up to 26621 bytes to store sprites in - to reserve n bytes, use
RESERVE n. n should be bigger than 8191 and less than 26621. Of course,
reserving more space for sprites leaves you with less room for your BASIC
program.

If you have just MERGED more sprites onto those in memory, it is possible that
more than one sprite will have the same number. You can renumber all the sprites
using the RESEQ catmand which renumbers them from 1 in steps of 1.

DISPLAY MODES

Data can be displayed on the hi-res screen in either two-colour mode or
four-colour mode. In two-colour mode, each character block contains 64 (8x8)
pixels. In four-colour mode, each pixel can take on one of four colours, but each
character block contains only 32 pixels, since each pixel is twice as wide as in
two colour-mode. MONO and MULTI put the hardware into two-colour and four-colour
modes respectively.

S2C0L and S4COL govern whether the sprite commands operate on two-colour data or
four-colour (multi-colour mode) data. Thus it is possible to display a picture on
the screen in two-colour mode while preparing data to be displayed in four-colour
mode.

SETTING THE ATTRIBUTE VALUE

SETATR is a command which sets up the value of ATR, the current attribute value.
When in S200L mode, it takes the form: SETATR 0,foreground,background,
"foreground" and "background" are one of the following:

BLACK WHITE RED CYAN
PURPLE GREEN BLUE YELLOW
ORANGE BROWN .RED GRAY1
GRAY2 .GREEN .BLUE GRAY3

(These are in fact predefined constants which return values in the range 0 to
15).

A full stop before the colour should be read 'light' - e.g. ".GREEN" is light
green.

In S4COL mode, use:

SETATR colour3,colourl,colour2 (note the order!)

(Colour zero is the same for the whole screen).

12

PAPER, BORDER AND INK COLOURS

TPAPER, TEORDER, HPAPER and HBORDER define the paper (background) and border
colours used in LORES (TEXT) mode and HIRES mode. For example:

TPAPER EROWN:TBORDER YELLOW

will give a brown background with a yellow border when in text mode, and

HBORDER BLACK

will give a black border when in hi-res mode.

Also 'INK colour1 will set the colour used when printing characters in text mode.

The command LORES puts the screen into text mode, while the command HIRES puts it
into hi-res mode. To put a text window on the screen, use WINDOW n which will
make the top n lines of the screen hi-res, and the rest text. For example, WINDOW
16 will give you 16 lines of hi-res at the top of the screen and 9 lines of text
at the bottom. When a window is set up, the hi-res border colour is used. Note
also that use of a disk drive while a window is set up will make it flicker.

Now we will look at seme words which place data inside sprites:

PLOT, BOX, DRAW, POLY and POINT

First type "WINDOW 16" to set up a screen window. Unless you have already used
the computer, the upper part of the screen will be filled with garbage which must
be removed.

SCLR SPN,ATR clears all the pixel data in a sprite SPN and sets the attributes to
ATR. Type "ATTON" (this is explained later) and then "SETATR 0,BLACK,WHITE" to
set up the attribute used. Now, if you type "SCLR 0,ATR" the upper part of the
screen will be cleared. Note that an "SCLR" is done automatically when you create
a sprite using "SPRITE".

PLOT is used to set or clear individual points in a sprite; the format is:

PLOT SPN,COL,ROW

If you type "PLOT 0,0,0" you will see that the point at the top left corner of the
screen is set. Try using other values of COL and ROW. The maximum value of COL
is 319, while the maximum value of ROW is 199, although you cannot see any points
plotted with ROW greater than 127 because you have set up a text window.

PLOT can also be used to clear points in a sprite to the background colour or to
toggle (invert) a point; this is achieved by using the word MODE first. MODE 0 or
MODE 1 will cause points to be set to background colour, while MODE 2 or MODE 3
will cause them to be set to the foreground colour. If you use MODE 4, the points
will be inverted.

In S4COL mode, 0, 1, 2 and 3 correspond to the background colour, colour 1, colour
2 and colour 3 respectively (see the section "SETTING THE ATTRIBUTE VALUE"), and
mode 4 will cause colour 3 to change to background, colour 2 to change to colour 1
and vice versa. For example, if you now type MODE 0:PLOT 0,0,0 the point at the
top left of the screen that you set earlier will be cleared.

13

MODE 4:FOR 1=0 TO 100:PLOT 0,0,0:FOR J=0 TO 100:NEXT J , I

w i l l make i t f l a sh on and off.

MODE a l s o a f f e c t s the BOX, DRAW and POLY catmands.

DRAW SPN,COL,ROW,COL2,ROW2 draws a l i n e from one po in t t o another . For example:

DRAW 0,0,0 ,319,127

will draw a diagonal line across the screen.

BOX SPN,COL,ROW,WID,HGT plots a rectangular block inside a sprite. The top left
corner is at COL,ROW. WID is the width and BGT is the height of the block.

MODE 3: BOX 0,150,54,20,20

will draw a 20x20 pixel square at the centre of the screen.

POLY SPN,COL,ROW,WID,HGT,NUM,INC draws a polygon on the screen:

COL and ROW are the centre of the polygon. WID is the horizontal radius and HGT
is the vertical radius. INC is the inclination in degrees and NUM is the number
of sides. If NUM is large, or less than three, a circle (or ellipse) is drawn
instead of a polygon. For example, POLY 0,32,32,32,32,5,0 draws a pentagon in the
top left of the screen. POLY 0,32,32,32,32,5,36 draws another one over it, while
POLY 0,32,32,32,32,0,0 draws a circle.

Here is a program which illustrates the use of the DRAW and POLY commands:

10 SETATR 0,BLACK,.GREEN
20 S2COL
30 SCLR 0,ATR
40 MODE 3
50 MONO
60 HIRES
70 '
80 PROCquad(100,160,48)
90 '

(Continued over page)

14

(continued from previous page)

100 REPEAT
110 UNTIL the cows come heme
120 '
130 LABELquad(qrw,qcl,qsz)
140 CIF qsz>2
150 POLY 0,qcl,qrw,qsz/1.5,qsz/1.5,0,0
160 PROCquad (qrw+qsz, qcl,qsz/2)
170 PROCquad (qrw, qcl +qsz, qsz/2)
180 PROCquad (qrw-qsz, qcl, qsz/2)
190 PROCquad (qrw,qcl-qsz,qsz/2)
200 DRAW 0,qcl,qrw-qsz,qcl,qrw+qsz
210 DRAW 0,qcl-qsz,qrw,qcl+qsz,qrw
220 CEND
230 PROCEND

Notice that the procedure 'quad' in line 130 is recursive; it calls itself.

POINT (SPN,COL,ROW) is a function which is used to examine a pixel on the hi-res
screen. In S2COL mode, it will return a value of 0 or 1, corresponding to the
point being cleared or set respectively. In S4COL mode, it returns 0,1,2 or 3
corresponding to background or the three colours.

Although the pixels are twice as wide in multi-colour mode, the scaling when using
COL is still the same; in S4COL mode, COL=0 and COL=l will refer to the same
pixel.

SPRITE DATA MOVEMENT COMMANDS

BASIC LIGHTNING includes 39 commands for moving rectangular blocks of sprite
data:

MOVBLK
MDVOR
MOVXOR
MOVAND

BLK%BLK
BLK%OR
BLK%XOR
BLK%AND

MOVATr

ATTOFF

DTCTON

PUTBLK
PUTOR
PUTXOR
PUTAND

OR%BLK
OR%OR
OR%XOR
OR%AND

SWAPATT

ATTON

DTCTOFF

GETBLK
GETOR
GETXOR
GETAND

XOR%BLK
XOR%OR
XOR%XOR
XOR%AND

ATT20N

CPYBLK
CPYOR
CPYXOR
CPYAND

AND%BLK
AND%OR
AND%XOR
AND%AND

Note that the screen is treated throughout as Sprite 0 with height 25 characters
and width 40 characters.

ATTOFF,ATTON and ATT20N control the movement of attribute data with the pixel
data. After executing the ATTOFF command, attribute data movement is disabled.
Only the primary attribute data is moved after ATTON, and both sets (primary and
secondary data) are moved after ATT20N. The screen's secondary attribute data
uses the same memory as the text colour memory, so you must not scroll the text
screen if you are displaying data in multi-colour mode.

15

Thus, to go into two-colour mode, use

M0NO:S2C0L:ATTON

and for four-colour mode, use

MULTI:S400L:ATT20N

ONE-WAY DATA MOVEMENT

All the data movement commands have been named to make them easy to remember:

SUFFIXES:

BLK the sprite data overwrites its destination.
OR the sprite data is ORed with its destination.
AND the sprite data is ANDed with its destination.
XOR the sprite data is exclusive-QRed with its destination.

PREFIXES:

MOV parameters: SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
A window of width WID and height HGT in sprite SPN whose top left-hand
corner is at OOL,RCW is MOVed into SPN2 at C0L2 and ROW2.

PUT parameters: SPN,COL,ROW
Sprite no. SPN is PUT onto the screen with its top left corner at COL,ROW

GET parameters: SPN,COL,ROW
GETs the sprite no. SPN from the screen at position COL,ROW

CPY parameters: SPN,SPN2
COPYs sprite no. SPN into sprite no. SPN2

The combinations of the four prefixes and four suffixes given yield the first
sixteen commands given above.

The logical operations OR, AND and XOR will be familiar to anyone with a knowledge
of Boolean algebra; however, it is easy to understand what they do in terms of
pixels:

OR The destination pixel is set if either the source OR the
destination pixel is set.

AND The destination pixel is set only if the source AND the
destination pixels are set.

XOR The destination pixel is set only if one, but not both, of the
source and destination pixels are set.

XOR is particularly useful when it is necessary to move a sprite over seme
background data - the sprite can be put on the screen using a PUTXOR and the
background can be restored again with another PUTXOR.

16

Clear the computer's memory using NEW and type in the following:

10 MONO t S2COL: ATTON t RRSRT
20 '
30 SETATR 0,ELACK,RED
40 SPRITE 1,16,16
50 '
60 SETATR 0,BLACK,.GREEN
70 SCLR 0,ATR
80 WINDOW 16
90 '
100 POLY 1,64,64,64,64,5,0
110 POLY 0,64,64,64,64,5,36

Line 10 puts the graphics into two-colour mode. Lines 20 and 30 dimension sprite
no. 1 to be 16 character blocks square with black foreground and red background.
60 to 80 set up the screen window. 100 draws a pentagon inside sprite no. 1, 110
draws one at an angle on the screen.

RUN the program, and type PUTBLK 1,0,0.

You will see that sprite no. 1 is put on the screen, and it completely overwrites
what was there before. Also, the attributes from sprite 1 are moved (i.e. black
lines with red background) because of the ATTON in line 10.

RUN the program again, and type PUTOR 1,0,0. Sprite 1 is "put on top of" any data
that it is already on the screen.

After RUNning it again, type PUTAND 1,0,0. The only points that are left on the
screen are where the lines from the two pentagons cross.

RUN it again, followed by PUTXOR 1,0,0. The resulting display is similar to that
from PUTOR, but the points are cleared where the lines cross. Type PUTXOR 1,0,0
again, and the second pentagon vanishes, leaving the first one as it was before.

If you change the ATTON in line 10 to an ATTOFF, the screen colour will not be
changed when you type the MOV command.

After changing line 10, run the program and type PUTOR 1,0,0, followed by GETBLK
1,0,0. Sprite 1 now contains the double pentagon that is on the screen, and this
can be placed on the screen at any point using PUTBLK. If you try to put the
sprite wholly or partially off the screen (eg. PUTBLK 1,-1,-1), BASIC LIGHTNING
does not give an error message, but places as much of the sprite on the screen as
is possible. This automatic adjustment applies to all the data movement
commands.

If you type SPRITE 2,16,16:CPYBLK 1,2 and PUT sprite 2 onto the screen, you will
see that sprite 1 has been copied into sprite 2.

The MOV commands are much (tore general than the PUTs, GETs and CPYs and can be
used to copy a window from any position in one sprite to any position in another.
For example, MOVBLK 0,0,0,4,4,0,36,12 will copy a 4x4 block from the top left-hand
corner of the screen to halfway down the right-hand side.

17

When using AND,OR and XOR with multi-colour mode, the situation is more complex,
and this is summarised below for the advanced user:

source
colour

0
0
0
0
1
1
1
I
2
2
2
2
3
3
3
3

dest
colour

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

dest.
BLK

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

colour after
OR

0
1
2
3
1
1
3
3
2
3
2
3
3
3
3
3

AND

0
0
0
0
0
1
0
1
0
0
2
2
0
1
2
3

XOR

0
1
2
3
1
0
3
2
2
3
0
I
3
2
1
0

(NB colour 0 means the background.)

TWO-WAY DATA MOVEMENT COMMANDS

The second set of sixteen data movement commands are the two-way move commands:

BLK%BLK OR%BLK XOR%BLK AND%BLK
BLK%OR OR%OR XOR%OR AND%OR
BLK%XOR OR%XOR XOR%XOR AND%XOR
BLK%AND OR%AND XOR%AND AND%AND

As you can see, they each consist of two of the logical operators BLK, OR, XOR or
AND separated by a '%'.

The first operator specifies the logical operation for the data from SPN2 going
into SPN, the second is the logical operation for the data going into SPN2 from
SPN. All these commands have the same parameters:

SPN,COL,ROW,WID,HGT,SPN2,C0L2,R0W2

SPN,COL and ROW specify the top left-hand corner of window no. 1, while SPN2, C0L2
and R0W2 give the top left-hand corner of window no. 2.

Data is moved between the two windows simultaneously, the logical operations
operating in exactly the same way as with the single-way move commands.

MOVING ATTRIBUTES

Two commands are provided to move blocks of attributes:

MOVATT SPN,C0L,R0W,WID,HGT,SPN2,C0L2,R0W2
SWAPATT SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

They operate in a similar way to MDVBLK and BLK%BLK, moving the attributes only.
If in ATTON mode, the primary set of attrbutes only is moved, while both primary
and secondary sets are moved in ATT20N mode.

18

COLLISION DETECTION

Collision detection is enabled by the DTCTON command and disabled by DICTOFF. (It
is always best to switch it off when not required since it slows down data
movement slightly.)

The pseudo-variables CCOL and CROW contain the column and row of the collision
after sprite data has been moved. If a collision has not occurred, CCOL and CROW
are both set to -1.

In the case of single^way move commands, CCOL and CROW will record the position in
the destination sprite. With two-way moves CCOL and CROW give the position in
SPN2. (Note that the collision is detected by examining the data before it is
moved.)

The position in CCOL and CROW is the first collision found - the data is moved
starting at the top left-hand corner going from left to right along each line of
character blocks.

In multi-colour mode, colourl and the background are both regarded as transparent
to collisions - only colour2 and colour3 will result in a collision being
detected.

CLEARING AND INVERTING WINDOWS

SCLR SPN,ATR was mentioned earlier and is used to clear a whole sprite, setting
the attributes to ATR. The secondary attributes are only set if in ATT20N mode.

WCLR SPN,COL,ROW,WID,HGT,ATR is similiar to SCLR, but it only clears a window
inside SPN rather than the whole sprite.

For example, if you put seme data on the screen;

POLY 0,64,64,64,64,5,0
POLY 0,64,64,64,64,5,36

then the bottom right-hand corner of the figure is removed by:

WCLR 0,8,8,8,8,ATR

SETA SPN,COL,ROW,WID,HGT,ATR is used to initialise only the attributes in a
window. As with SCLR and WCLR, the secondary attributes are not altered unless in
ATT20N mode.

For example try:

SETATR 0,BLACK,PURPLE:SETA 0,0,0,16,16,ATR

INV SPN,COL,ROW,WID,HGT will invert the pixel data in the specified window. If in
MONO mode, background is changed to foreground and vice-versa. In MULTI mode,
background is changed to colour 3, colour 1 is changed to colour 2 and
vice-versa.

SCAN(SPN,COL,ROW,WID,HGT) is a function which will return -1 (true) if there is
data in the specified window. For example, PRINT SCAN(0,0,0,16,16) will give -1
if the screen is still set up with the display from the WCLR example.

ATTGEr SPN,COL,ROW will look at the attribute value at the specified character
block and place the attribute in the pseudo-variable ATR.

19

SCROLLING COMMANDS

BASIC LIGHTNING has the following commands for scrolling data and attributes in
sprite windows:

SCRl WRR1 SCL1 WRL1
SCR2 WRR2 SCL2 WRL2
SCR8 WRR8 SCL8 WRL8

SCROLL WRAP

ATTUP ATTDN ATTL ATTR

Clear the memory using NEW, and type in the following program:

10 MONO
20 S2COL
30 ATTON
40 SCLR 0,3
50 WINDOW 16
60 POLY 0,32,32,32,32,4,0
70 POLY 0,32,32,32,32,0,0

RUN it; this puts some information on the screen to be scrolled.

The first twelve commands scroll or "wrap" data left or right by 1,2 or 8 pixels.
With a scroll command, any data shifted off the edge is lost and blanks are
shifted into the other side. In the case of the wrap commands, data which is
shifted off one edge re-appears at the other side.

"SC" at the start of a command means "scroll" and "WR" means "wrap". The third
letter is either "R" for right or "L" for left. The digit at the end is the
number of pixels being scrolled in 2-colour mode. All 12 commands have the same
parameters, SPN,COL,ROW,WID,HGT which define the window in which the scrolling is
to take place. COL,ROW is the top left hand corner. None of these commands alter
the attribute data.

If you type 3CR1 0,0,0,8,8 you will see that the figure on the screen is shifted
right by one pixel. To repeat a command several times, you can use "RPT n,"
before the command where n is the number of times that it is to be repeated. If
you now type RPT 63,SCRl the figure will be scrolled out of the window (remember
that commands can be used without parameters as an abbreviation). RUN the program
again and type "RPT 64,WRR1 0,0,0,8,8". The pixel data re-appears at the left of
the window as it is shifted out of the right side.

The other ten commands in this group function in a similar way, only differing in
the direction of scrolling or number of pixels scrolled. One WRR2 is not much
faster than two WRRls - the two-pixel scrolls are intended for use in multi-colour
mode where one-pixel scrolls cannot be used.

WRAP and SCROLL are used bo scroll vertically. The parameters are:

SPN,COL,ROW,WID,HGT,NUM

NUM is the number of pixels to be scrolled - a positive value indicates scrolling
up and a negative value is used for scrolling down. The maximum value allowed is
127 (or -127).

ATTUP,ATTDN,ATTL and ATTR are used to scroll attributes by one character block up,
down, left and right. The parameters for these commands are:

SPN,COL,ROW,WID,HGT

20

Type in the following lines over the program that you already have in the memory:

60 SETATR 0,BLACK,RED
70 SETA 0,0,0,4,4,ATR
80 SETATR 0,BLACK,PURPLE
90 SETA 0,4,0,4,4,ATR

100 SETATR 0,BLACK,GREEN
110 SETA 0,0,4,4,4,ATR

This sets up sane attributes to be scrolled.

You can see that the attributes are scrolled right one character block by ATTR
0,0,0,8,8. Note that the attributes are always wrapped round. ATTL (left), ATTUP
(up) and ATTDN (down) are similar.

SPRITE TRANSFORMATIONS

This set of commands are used to carry out transformations on sprites and are
intended to be used prior to displaying sprites on the screen since they are not
as fast as the move or scroll commands.

FLIP and FLIPA are provided to reflect a window around a horizontal line through
its centre, and both have the following parameters:

SPN,COL,ROW,WID,HGT

FLIPA is used the reflect the attributes only; the secondary attributes are moved
only if in ATT20N mode. FLIP will move the pixel data, and attributes as well if
the computer is in ATTON or ATT20N mode.

Put some shapes on the screen:

POLY 0,16,16,16,16,0,0 : POLY 0,48,16,16,16,3,0
POLY 0,16,48,16,16,4,0 : POLY 0,48,48,16,16,5,0

If you now type:

FLIP 0,0,0,8,8

you will see that the window is turned upside-down.

MIR and MAR are equivalent to FLIP and FLIPA; they have the same parameters but
they reflect the window around a vertical line rather than a horizontal one.

MIR 0,0,0,8,8 will reflect the figures at the top left of the screen.

SPIN is used to rotate one window through 90 degrees into another window - unlike
FLIP and MIR, it cannot be used with multi-colour mode data. Its parameters are:

SPN,COL,ROW,WID, HGT,SPN 2,COL2,ROW2

WID and HGT are the width and height of the source window; obviously, these are
interchanged to give the dimensions of the destination window in SPN2.

If you now type:

SPIN 0,0,0,8,8,0,8,8

the data you put on the screen earlier will be rotated and placed on a different
part of the screen.

?i

XPANDX and XPANDY expand one sprite window into another in the X (horizontal) and
Y (vertical) directions respectively. They both use the following parameters:

SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

WID and HGT give the size of the source window; in the case of XPANDX, the
destination window will be twice as wide as WID, and with XPANDY, the destination
will be twice as high as HGT.

Since expansion of the window begins at the right in the case of XPANDX and at the
bottom of the window for XPANDY, it is possible to expand a window into itself.
Try:

XPANDX 0,0,0,8,8,0,0,0

followed by

XPANDY 0,0,0,16,8,0,0,0

CHARACTER MANIPULATION

LCASE and UCASE put the text into lower case and upper case respectively. Since
BASIC LIGHTNING holds the character set in RAM, the new character set has to be
copied down from the character ROM.

The CHAR command moves a character into a sprite at a specified row and column.
The parameters are:

SPN,COL,R0W,NUM

NUM is the number of the character. As you may already know, the C64 uses display
codes when displaying data on the screen which differ frcm the ASCII codes. The
display codes refer directly to the position in the character set. NUM is the
number of the character being used:

0 to 255 ordinary ASCII characters
256 to 511 reverse ASCII characters
512 to 767 display codes
1024 to 1279 double width ASCII
1280 to 1535 reverse double width ASCII
1536 to 1791 double width display codes

If NUM is less than 256, it is assumed to be an ASCII character, and is converted
into display codes 0 to 127 which are normally the non-reversed characters. If
NUM is in the range 256 to 511, the display codes frcm 128 to 255 are used
instead, which are normally reverse characters. When NUM is between 512 and 767,
512 is subtracted to give the display code.

It is also possible to put double-width characters into a sprite, using NUM>1024.

For example, an "a" can be placed on the screen using either CHAR 0,0,0,65 (65 is
the ASCII code for "a") or CHAR 0,0,0,513 (513 - 512 = 1 is the display code for
"a").

The STRPLOT command can be used to place a whole string on the screen; the
parameters are:

The offset is simply added to the ASCII value of each character in the string
before placing it in the sprite. Thus an offset of zero gives ordinary
characters, 256 gives reverse characters, 1024 gives double width and 1280 gives
reverse double-width. Also, an offset of 2048 will put single-width characters in
the sprite, but will leave a character block between each one; 2304 will give
double-spaced reverse characters. Try the following:

STRPLOT 0,10,10,"Basic Lightning",0
STRPLOT 0,10,10,"Basic Lightning",256
STRPLOT 0,10,10,"Basic Lightning",1024
STRPLOT 0,10,10,"Basic Lightning",1280

PUTCHR is the opposite of the CHAR command - it moves a character block from a
sprite back into the character memory. It has the same parameters as CHAR:

SPN,COL,ROW,NUM

NUM can take on a value between 0 and 767, 0 to 255 converting NUM from ASCII, 256
to 511 giving reverse ASCII, and 512 to 767 being converted straight into the
display code, as with CHAR. Note that if you want to use PUTCHR to redefine the
letter "a" for example, you must also redefine the reverse "a" (display code 129)
if it is to be used with the flashing cursor.

Finally, DBLANK will blank the entire display to border colour while DSHOW will
turn on the display again.

READING THE KEYBOARD, JOYSTICK AND LIGHTPEN

KEYBOARD

It is of course possible to read the keyboard using the existing GET command, but
this cannot detect multiple key depressions and cannot detect the shift or
Commodore keys.

KB(n) is a function which returns a true value (-1) if key no. n is pressed. The
keys are numbered from 0 to 63:

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

INST/DEL
MO II

P I C ii

II T i l

•I Q II

ll_|_ll

II II

" 1 "
RETURN

"W"
"R"
ii Y "

II X II

" p "

"*•'
"«-" top l . h .

<&=£>
"A"
"D"
"G"
" J "
"L"
II . II

/

of K.B.

32
33
34
35
36
37
38
39
40
41
42 •
43
44
45
46
47
48
49
50
51
52
53
54

f l
"Z"
"C"
"B"
"M"
•i II

R.H. SHIFT
SPACE BAR
F3
" S "
up II

"H"
"K"

l l _ M

•COMMODORE1 KEY

f 5
"E"
l l rn l l

"U"
" 0 "

„@n
"t" 23

23
24
25
26
27
28
29
30
31

CTRL
f7
„4„
"6"
"8"
"0"
••_»

CLR/HOME
"2"

55
56
57
58
59
60
61
62
63

"Q"

* 4
SHIFT LOCK and L.H. shift
"X"
"V"
"N"
f

"/"
RUN/STOP

JOYSTICKS

FIRE1 and FIRE2 are functions which will give a true value if the fire button on
the joystick in control ports 1 or 2 is pressed. For example:

1230 IF FIRE1 THEN PROC zap alien

JSl and JS2 are functions which return the directions of joysticks 1 and 2
respectively; the direction is represented as a number from 0 to 8:

When a value of zero is returned by JSl or JS2, this indicates that the joystick
is in its unused position.

LIGHTPEN

IPX and LPY will return the X and Y positions of the lightpen respectively.

Fig 3

24

HARDWARE SPRITES

Besides having its own software sprites, BASIC LIGHTNING has commands which allow
the use of the Commodore's hardware sprites.

Unlike software sprites, hardware sprites are not controlled using PUT and GET
commands; each sprite can appear at only one location on the screen and is
separate from the pixel data. In addition, each hardware sprite carries its own
colour (independant of the attributes) and display mode (2 colour or 4 colour),
and can be displayed with either hi-res or text data.

Defining a Hardware Sprite

Each hardware sprite is 24 pixels long and 21 pixels high, occupying 63 bytes in
memory. Due to memory constraints, the sprite definitions must share memory with
the character set, each sprite using the same amount of space as eight characters
(one byte is left unused at the end of each definition to make 64 bytes). Since
the character set takes up 2k bytes (from $C000 to $C7FF), there is room for
2048/64 = 32 definitions, which are numbered from 0 to 31, although only 8 can be
put on the screen at once. Sprite definition no. n will share memory with the
characters whose display codes are n*8 to n*8+7.

The data for a hardware sprite is designed with the Sprite Generator Program and
saved as a software sprite in the normal way. At run-time, the pixel data can be
copied from any part of a software sprite into a hardware sprite using the SPRCONV
command.

The SPRCONV command has the following parameters:

SPN,COL,ROW,SPN2

SPN, COL and ROW define the top left-hand corner of the source software sprite in
the normal way, COL and ROW being in pixels. SPN2 is the hardware sprite
definition number. As an example type in the following:

STRPLOT 0,0,0,"*OA",256
STRPLOT 0,0,1,"SIS",256
STRPLOT 0,0,2," ",256
SPRCONV 0,0,0,16

Since the information was put into hardware sprite definition no. 16, the eight
characters with display codes from 8*16 = 128 onwards will have been overwritten.
To verify this, type CTRL-9 to give reverse characters, followed by "@abcdefg".

Only eight hardware sprites can exist on the screen at one time, each of which can
be associated with one of the 32 definitions using the .SET command:

.SET <sprite no.>,<definition no.>

The sprites are numbered from 0 to 7. If you now type ".SET 1,16", hardware
sprite no. 1 will be associated with the definition which you have just created.

It is of course possible to copy a large software sprite into several hardware
sprites.

Switching on a Hardware Sprite

Before a sprite can be displayed, it must be turned on using the .ON command:

>".

.ON <sprite#>

.ON 1 will enable sprite no. 1. The equivalent command to turn a sprite off again
is:

.OFF <sprite#>

To define a sprite's colour, use:

.00L <sprite#>,<colour>

.COL 1,BLACK will make sprite no. 1 black.

Placing a Sprite on the Screen

Once the sprite has been enabled and given a colour, it will still not be visible
because it is positioned off the screen. Positioning of a sprite on the screen is
carried out by the .XPOS <sprite#>,<position> and .YPOS <sprite#>,<position>
commands, the positions in both cases being at pixel resolution. Sprite no. 1 can
be placed at the top left of the screen using:

.XPOS 1,24

.YPOS 1,50

Values of the x co-ordinate between 1 and 23 allow the sprite to be positioned
partially off the screen; similarly for y co-ordinates between 30 and 49.

Moving a hardware sprite around the screen is very easy:

.YPOS1,100: FORI=100TO250STEP2:.XPOS1,1:NEXT

Double-Sized Sprites

It is possible to expand a hardware sprite to double size in either direction
using .XPANDX <sprite#> to expand in the X-direction and .XPANDY <sprite#> to
expand in the Y-direction. If you type .XPANDX 1 followed by .XPANDY 1, the
sprite on the screen will be expanded to double size.

•SHRINKX <sprite#> and .SHRINKY <sprite#> have the opposite effect, returning a
sprite to normal size.

A double-sized sprite is partially displayed on the screen with y-co-ordinates
between 9 and 14, or x-co-ordinates from 481 to 503, then 0 to 24.

Multi-Coloured Sprites

A hardware sprite is put into multi-colour mode using .4COL <sprite#>. As with
the hi-res screen, horizontal resolution is cut in half. Two more colours are
required; these are the same for all sprites and are set by the .COLO and .COLl
commands:

.COLO <colour>

.COLl <colour>

2G

The four possible colours are displayed differently by a hardware sprite than by
the hi-res screen:

Hi-Res Screen Hardware Sprite
(Software Sprite)

Background colour transparent (screen colour)
Colour 1 colour zero (set by .COLO command)
Colour 2 sprite colour (set by .COLn ccmmand)
Colour 3 colour 1 (set by .C0L1 ccmmand)

A sprite can be put back into 2 colour mode using .2COL <sprite#>.

Display Priorities

Lower numbered sprites have priority over high numbered sprites, e.g. sprite 0
will always appear to pass in front of sprite 1 if they coincide. It is also
possible to control the priorities between sprites and background data (i.e. the
hi-res pixel data created by the software sprites). To give the background
priority over a sprite, use .OVER <sprite#>. .UNDER <sprite#> puts the background
underneath a sprite again, as normal.

Hardware Sprites Collision Detection

Collisions between two sprites or between a sprite and background data is detected
using the function .HIT(n). If n is less than 8, it will return a true value (-1)
if sprite n has hit another sprite. If n is greater than 8, a true value is
returned if sprite n-8 has hit background data. When you use .HIT(n) with a value
of less than 16, the records of any other sprite-to-sprite or background-to-sprite
collisions are cleared. However, you can still detect these by adding 16 to n, in
which case the value of the sprite collision register the last time that n was
less than 16 is used.

In multi-colour mode, colour zero (set by .COLO) and background colour 1 are
considered to be transparent for collisions.

SMOOTH SCROLLING

Smooth scrolling allows you to shift the entire screen over by 1 to 7 pixels
horizontally or vertically. Once the screen has been shifted over by seven
pixels, a wrap or scroll command must be used to move it by one character.

Before using smooth scrolling, the screen must be shrunk to 38 columns by 24 rows
to give space for new data to be shifted in; this is achieved using the H38COL
command (to go back into normal display mode, use H40COL). This gives two columns
on either side of the screen which are hidden under the border, and one at the
bottom of the screen.

Using the SCRLX n and SCRLY n commands, where n is between 0 and 7, it is possible
to shift the entire screen by n pixels.

4. SOUND COMMANDS

BASIC LIGHTNING provides a s e t of sound commands which al low you to con t ro l the
64 ' s SID ch ip .

27

To generate a sound frcm one of the three voices in the SID chip, you need to set
up the following:

1. Master volume
2. Frequency
3. Envelope (ADSR)
4. Waveform

The master volume of the SID chip is set using the TOLUME command - it is followed
by an expression in the range 0 to 15. For example, "VDLUME 15" sets the volume
to its maximum value.

The frequency of a voice is set by the FRQ command which takes the following
form:

FRQ voice,frequency

The voice is either 1, 2 or 3. The frequency is not in Hz (cycles per second);
you must multiply the frequency in Hz by 16.4015 first. Thus, to set the
frequency of voice 1 to A (440 Hz) you would use FRQ 1,440*16.4015. The maximum
value of the frequency parameter is 65535.

The volume of a musical note changes from when it is first struck. This can be
split into four phases: attack, decay, sustain and release:

After being struck, the volume rises to its peak value at a rate determined by the
'attack'. It then falls to the 'sustain' level at a rate determined by the
'decay'. At the end of the note, the volume falls away to zero at the 'release'
rate. This 'envelope' shape can be set up using the ADSR command: ADSR voice,
attack rate, decay rate, sustain level, release rate. The voice is 1, 2 or 3, and
the rest of the parameters are in the range 0 to 15.

The time between the start of the attack and the start of the release is
determined by the MUSIC command which has two parameters; the voice number and the
length of the note. The length can be frcm 1 to 255 and is measured in 60ths of a
second. A value of 0 indicates that the note lasts indefinitely.

As an example, type in the following and run it:

10 SIDCLR
20 VOLUME 15
30 FRQ 1,7217
40 ADSR 1,5,8,5,9
50 TRI 1
60 MUSIC 1,20

The SIDCLR command in line 10 simply clears any values that were set up in the
sound chip. TRI in line 50 sets up the waveform type and is explained in the next
section.

28

Try experimenting with different values of frequency and other parameters for
ADSR.

Changing the Waveform

The 64's sound generator is capable of generating four types of waveform:

1. SAWTOOTH waves
2. TRIANGLE waves
3. PULSE waves
4. NOISE

'SAWTOOTH' and 'TRIANGLE' refer to the shape of the waveform when plotted on a
graph:

A 'PULSE' wave looks like this:

The pulse width can be varied, so that a variety of sounds can be created.

NOISE can be used to generate realistic explosions.

The SAW command selects the sawtooth waveform:

SAW voice

29

TRI s e l e c t s t r i a n g l e waves:

TRI voice

NOISE s e l e c t s no i se :

NOISE voice

PULSE s e l e c t s a pu l se wave:

PULSE vo ice , pu lse width

The pu l se width i s in the range 0 t o 4095; 2048 g ives a square wave.

Try changing l i n e 50 of the l a s t exanple program t o use d i f f e r e n t waveforms, and
experiment with d i f f e r e n t values of pu l se width when using the PULSE waveform.

Here a r e some examples of the sounds t h a t can be c rea t ed :

GUNFIRE:

WLUME15:FRQ1,7217:ADSR1,1,9,3,9:NOISE1:MUSIC1,20

EXPLOSION:

VDLUME15:FRQ1,3000:ADSR1,0,13,5,12:NOISE1:MUSIC1,20

DEPARTING UFO:

10 SIDCLR
20 VOLUME 15
30 ADSR 1,9 ,2 ,11,12
40 TRI 1
50 MUSIC 1,30
60 FOR j = l TO 30
70 FOR i=12000 TO 28000 s t e p 800
80 FRQ l , i
90 NEXT i

100 NEXT j

Any of these examples could, of cou r se , use voice 2 or 3 .

FILTERING

The timbre of sound produced can be altered using filtering. Using the filter
command it is possible to control whether the oucput from each oscillator is
passed through the filter or not. The format for this command is:

FILTER voice,flag

The flag is either TRUE or FALSE, TRUE indicating that the voice is to be filtered
and FALSE indicating that it is not.

PASS n selects the filter's mode of operation:

PASS 0 low pass
PASS 1 high pass
PASS 2 band pass
PASS 3 notch reject

30

In low pass mode, frequencies above the cut-off frequency are attenuated. In high
pass mode, frequencies below the cut-off frequency are attenuated. In band pass
mode, only a narrow band around the cut-off is passed while notch reject has the
opposite effect.

CUTOFF n is used to select the cut-off frequency. The frequency is in the range 0
to 2047; i.e. the frequency used by FRQ must first be divided by 32 before being
used with the CUTOFF command.

It is also possible to make the filter resonant around the cut-off frequency using
RESONANCE n; the parameter is in the range 0 to 15.

Using a low pass filter in conjunction with resonance, the 'EXPLOSION' example
given earlier can be made more realistic:

10 VOLUME 15
20 FRQ 1,3000
30 ADSR 1,0,13,5,12
40 NOISE 1
50 FILTER 1,TRUE
60 PASS 0
70 CUTOFF 120
80 RESONANCE 12
90 MUSIC 1,20

RING MODULATION AND SYNCHRONISATION

Using ring modulation of two voices, very complex waveforms can be produced. Ring
modulation is enabled using the RING command:

RING voice,flag

The flag is TRUE or FALSE, enabling or disabling ring modulation respectively.

If voice=l, voice l's output is replaced by voice 1 ring modulated with voice 3.
When voice=2, voice 2 is ring modulated with voice 1. Voice 3 is ring modulated
with voice 2 when voice=3.

Realistic bell effects can be generated by using ring modulation coupled with low
pass filtering:

10 SIDCLR
20 VOLUME 15
30 ADSR 1,1,9,8,12
40 TRI 3
50 TRI 1
60 RING 1,TRUE
70 FILTER 1,TRUE
80 PASS 0
90 CUTOFF 80

100 REPEAT
110 READ a
120 IF a= - l THEN EXIT
130 PROCbell(a)
140 READ a
150 FOR b=l to a
160 NEXT b
170 UNTIL FALSE
180 END
190 '

(Continued over page)

31

(Continued from previous page)

200 lABELbell(fr)
210 FRQ l,fr
220 FRQ 3,fr*1.9766
230 MUSIC 1,40
240 PROCEND
250 '
260 DATA 1514,700,1201,700,1340,700,900,1400
270 DATA 900,700,1348,700,1514,700,1201,1400
280 DATA 1201,1500,1201,1500,1201,1500,1201,1500
290 DATA 1201,1500,1201,1500,1201,1500,1201,1500
300 DATA 1201,1500,1201,1500,1201,1500,1201,1500
310 DATA -1

Synchronisation of two voices is enabled using the SYNC catimand in a similar way
to RING: SYNC voice,flag.

Synchronisation of two voices can be used to mimic the sound of engines. In the
following example we hear what happens when a hedgehog is run over ...

10 SIDCLR
20 '
30 'The Bikers
40 VOLUME 15
30 ADSR 1,15,5,15,15
60 TRI 1
70 TRI 3
80 SYNC 1,TRUE
90 REPEAT
100 READ j
110 IF j=^l THEN EXIT
120 READ k,m
130 MUSIC 1,100
140 FOR i=j TO k STEP m
150 FRQ 3,i
160 FRQ l,i*2.5
170 NEXT i
180 UNTIL FALSE
190 DATA 270,750,1.4,650,1000,1.4
200 DATA 750,1150,1.4,1000,1400,1
210 DATA -1
220 '
230 'meet Spiny Norman
240 SYNC 1,FALSE
250 RING 1,TR(JE
260 ADSR 1,3,5,8,3
270 MUSIC 1,60
280 FOR i=0 to 5000 STEP 100
290 FRQ 1,20000+i
300 FRQ 3,20250+i
310 NEXT i
320 '
330 '
340 RING 1,FALSE
350 FRQ 2,3000
360 ADSR 2,0,13,5,12
370 NOISE 2
380 FILTER 2,TRUE
390 PASS 0

(Continued over page)
32

(Continued from previous page)

400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

CUTOFF 120
RESONANCE 15
MUSIC 2,
FOR i = 0
NEXT i
i

i

x=10000
y=8409
PULSE 1
ADSR I , !
MUSIC 1
FOR j=0

FRQ 1
FOR i=
NEXT
FRQ 1
FOR i=
NEXT
IF j=

NEXT j

,20
to 300

,1000
L5,15,15,15
,255
TO 32

,x
=0 TO 200
i
fY
=0 TO 200
i
7 THEN x=9803:y=8244

MUTE, OSC and ENV

OSC and ENV are functions which return the output amplitude of voice 3's
oscillator and envelope generator. It is possible to obtain a vibrato effect by
using OSC to modify either voice 1 or voice 2's frequency.

If oscillator 3 is being used in this way its output must be disabled using the
MUTE carmand. MUTE TRUE disables oscillator 3's output and MUTE FALSE enables it
again.

5. MULTI-TASKING

In BASIC LIGHTNING it is possible to execute up to five parts of a program
concurrently. This is done using a technique known as "time-si icing" - one part
of a program is executed for 1/20th of a second before moving on to the next.
Each "task" has its own set of variables which are independant of the others.

Before executing concurrent tasks, space must be allocated for the variables using
the ALLOCATE command; this is followed by four numbers, separated by commas, which
are the number of bytes reserved for variables in each of the four background
tasks. This command should always go at the top of a program since it also
performs a CLR to remove all variables.

Once the memory used by a task has been reserved, it can be invoked using the TASK
command. The syntax for TASK is:

TASK <task number>,<line number or label>

33

The task number can be 1 to 4. This command can only be used from the foreground
task.

Finally, the HALT command can be used to stop execution of a task. HALT takes the
form HALT n where n is the task number (1..4) that is to be terminated.

Here is a simple example to illustrate the use of multi-tasking:

If you RUN it, you will see that the computer is inputting and printing strings
and simultaneously scrolling the top line of the display.

Error Messages and I/O

If an error, STOP or END occurs in one of the background tasks, the computer will
wait until all the other tasks and the foreground task have finished executing trie
current command before leaving the program. In the case of an error, the task
number is printed in angle brackets above the error message.

I/O commands such as INPUI, PRINT etc. can only be executed by one task at a time
- a task will wait for the others to finish using I/O before proceeding with using
an I/O command.

Passing Values between Tasks

Since each task has its own set of variables, special commands are provided to
pass values between the tasks. The simplest way to do this is by using the
pseudo-array COMM0N% which is an array of 64 integers, the values of which are
shared between the various tasks.

If you have to pass real numbers or strings, you can use IMPORT which is a
function: IMPORT (<task number>,<expression>). The task number can be 0 to 4 -
zero means the foreground task. The expression is evaluated by that task. Note
that IMPORT cannot be used with an I/O ccmmand, i.e. you cannot use PRINT IMPORT
(0,A$), and it cannot be used from direct mode. Also, IMPORT will wait for the
task to finish executing its current ccmmand before evaluating the expression.

Allocation of Scrolling Buffers

When using the WRAP, ATTUP or ATTDN commands, a 256-byte buffer is used. In the
foreground task or task 1, this is hidden from the user. However, in tasks 2, 3
or 4, parts of the text screen are used to hold temporary scrolling data, so the
text screen must not be scrolled if WRAP, ATTUP or ATTDN are operating in tasks 2,
3 or 4.

34

10 ALLOCATE 100,0,0,0
20 WINDOW 1
30 SCLR 0,1
40 STRPLOT 0,0,0, "BASIC LIGHTNING ",0 '25 dots
50 TASK l,blscr
60 REPEAT
70 INPUT a$
80 IF a$="quit" THEN STOP
90 PRINT a$
100 UNTIL FALSE
110 '
120 LABEL blscr
130 REPEAT
140 RPT 64, WRR1 0,0,0,40,1
150 UNTIL FALSE

6. THE SPRITE GENERATOR PROGRAM

INTRODUCTION

The Sprite Generator Program was developed to compliment the Lightning series of
languages. The languages are comprised of commands for manipulating sprites and
screen data but do not have the facility to directly design sprites. This means
there are two phases to games creation. The first involves designing and editing
your sprites with the sprite generator program, and the second involves the
writing of the game itself using the Lightning languages. In practice the two
areas of work will probably be carried out simultaneously. For those of us who
are not artistically inclined, there are two sets of previously defined sprites
ready to use.

The Arcade Sprite Set

The first set of sprites (stored directly after the Sprite Generator Program on
the tape version) are the arcade sprites. A table is given at the end of this
section. These can be used in your games without any copyright problems
whatsoever. The filename is "DEM01".

The Demonstration Sprites

These are stored directly after the arcade sprite set and are the sprites used in
the demo program. Again these can be used, edited etc., with no copyright
restrictions, and they are stored under the filename "DEM02".

COLD START

If you enter the sprite generator program via a COLD start, then all sprites
previously stored will be cleared and all system variables reset. If, for
instance, you wish to use the demonstration sprites, you would enter via a COLD
start.

WARM START

If you en te r the program via a WARM s t a r t then a l l s p r i t e s w i l l be conserved and
a l l system v a r i a b l e s l e f t unchanged. I f you a c c i d e n t a l l y break out of the
program, r e - e n t e r v i a a WARM s t a r t .

THE CHR$ SQR

CHR$ SQR is the abbreviation used throughout this text for character square, and
refers to the 8 by 8 (or 8 by 4) grid to the left of the sprite screen. This is
the area used to create and edit sprites one character at a time.

THE HI-RES SCREEN

This is the area of screen 15 characters by 30 characters on which sprites are
created, developed, transformed and generally worked on.

THE CHR$ SQR CURSOR

This is the non-destructive flashing cursor which is used to design and edit the
character currently held in the CHR$ SQR.

35

HI-RES WINDOW

The area of the screen currently being worked on is referred to as the screen, or
hi-res, window. Its position is defined by COL and ROW, which correspond to the
positions of the top left of the window, and its dimensions are defined by HGT and
LEN. Top left of the hi-res screen has co-ords COL: 10, ROW:0. To see the window
you are currently working on just press the SPACEBAR. The window will flash.

SPRITE LIBRARY

This refers to the set of sprites you are currently working with and can contain
up to 255 sprites or use 8192 bytes.

SOFTWARE SPRITES

A sprite is a programmable graphics character. The Sprite Generator Program can
develop up to 255 sprites of user selectable dimensions, up to a total of 8k. All
sprite commands also apply to the screen which can be treated as a fixed dimension
sprite and is given the number 0.

HARDWARE SPRITES

The Ccmmodore 64 has its own extremely powerful sprites which for clarity we will
refer to as the hardware sprites. These are 24 pixels wide (or 12 wide in 4
colour mode) and 21 pixels high. Your software sprites can be converted to
hardware sprites in FORTH or BASIC but they will need to have the abc-'e dimensions
or less. This means a sprite should be 3 characters wide and 3 characters high
but with at least three free pixel rows above or below the character.

INKS and PAPER

When working in two colour mode the Commodore 64 allows two colours per character.
The background colour (displayed by pixels "off") is the colour indicated by
PAPER. The foreground colour (displayed by pixels "on") is the colour indicated
by INK 3. When working in four colour mode the Ccmmodore 64 allows four colours
per character. The background colour is again the colour indicated by PAPER. The
three foregound colours are the colours indicated by INK 1, INK 2 and INK 3. It
is advisable to be careful not to set any of these three INKs or the PAPER to hold
the same value. It is also advisable not to change the PAPER colour when in four
colour mode.

The Commodore Key

This is the key marked with the Commodore decal and is located on the far left of
the bottom key row.

THE FUNCTION KEYS

The Sprite Generator Program operates in five distinct modes, although some
functions are available in more than one of the five modes. To select a
particular mode press the Ccmmodore key together with one of the keys "1", "2",
"3", "4" or "5". Release the Ccmmodore key when the mode is displayed. To exit
any of the five modes merely press the Ccmmodore key and 0 until MODE:0 is
displayed.

36

MODE: 1

This mode deals with the 2 colour mode character development. Once entered,
M0DE:1 will be displayed and the CHR$ square cursor will flash.

The Cursor Keys

The normal Commodore cursor keys are used to move the non-destructive cursor
around the 64 individual cells. Use RIGHT SHIFT and not LEFT SHIFT to move left
and up. To switch a cell "ON" press "3". The appropriate cell will switch on
(turn black). To switch a cell "OFF" press "4". The appropriate cell will switch
off (turn white). So the cursor keys and the keys "3" and "4" can be used to
build up sprites, by designing a character (64 pixels) at a time.

The "D" and "U" Keys

These keys will <D>ownload or <U>pload between the CHR$ square and the hi-res
screen. Once you have designed your character using the cursor keys or Numerical
Data Input ("N" key), typing "D" will write the contents of the CHR$ square to the
current cursor position on the hi-res screen. The current cursor position is
displayed in the panel as COL and ROW, but pressing the SPACEBAR will flash the
current hi-res window. When "D" is pressed, data will be downloaded into the top
left of this window. If ATTR (displayed in the panel and toggled by pressing "A")
is zero then the current INK 3 and PAPER colours will not be downloaded with the
pixel data. If ATTR is 1 then these attributes will be set in the downloaded
character. Similarly, pressing "U" will upload from the hi-res screen to the CHR$
square and if ATTR is 1 then INK 3 and PAPER will take on the values of the
uploaded character from the hi-res screen. If ATTR is zero then attributes INK 3
and PAPER remain unchanged. Note that pressing "U" will destroy whatever is
currently held in the CHR$ square and if the character square being picked up (top
left of screen window) is empty then this will have the effect of clearing the
CHR$ square.

The "A" Key

Pressing the "A" key will toggle the attribute flag on and off. In other words if
ATTR is 0 then it becomes 1, and if 1, then it becomes 0. In fact, if you hold
"A" down you will see the value of ATTR switching between 0 and 1. The value of
ATTR affects the operation of many of these functions but it is generally true to
say that if ATTR is 1 then attributes will be moved with pixel data and when ATTR
is 0 pixel data alone will be moved.

The "E" Key

This key is used to change the current values of the INKs and PAPER. Once "E" has
been pressed the CHR$ square will cease flashing. On releasing the "E" key the
prompt "INK TO BE EDITED" will be displayed. You should then type a number in the
range 1 to 4 followed by ENTER. "1", "2" and "3" correspond to INK 1, INK 2 and
INK 3 and "4" corresponds to PAPER. In mode 1 there is little point in editing
INK 1 or INK 2 as these are only utilised when four-colour mode is in operation,
i.e. NDDE:2. If the number entered is not in the range 1 to 4 the prompt will
simply repeat. Once the INK (or PAPER) to be changed has been selected, a second
prompt "NEW VALUE" is displayed. This should be a value in the range 0 to 15.
The number input can be in decimal or hex preceded by "$", i.e. typing $E is

37

equivalent to typing 14. Again, an out of range value will cause the prompt to
repeat. The colours and their corresponding values are as follows:

0
1
2
3
4
5
6
7

BLACK
WHITE
RED
CYAN
PURPLE
GREEN
BLUE
YELLOW

8
9
10
11
12
13
14
15

ORANGE
BROWN
LIGHT RED
GRAY1
GRAY2
LIGHT GREEN
LIGHT BLUE
GRAY3

The "N" key is used to enter a character as a series of 8 decimal or hexadecimal
numbers. As before, hex numbers should be preceded by a "$". Pressing "N" will
cause the CHR$ cursor to stop flashing and releasing "N" will display the prompt
"BYTE 0 : N" where BYTE 0 means the first of the 8 bytes making up the character
in the CHR$ square and N is the value it currently holds. If the character is
blank then N will be zero, if not then the value will be the binary equivalent of
the pattern in that byte. If you do not wish to change this value then just press
ENTER, otherwise enter the new value. In either case, pressing ENTER will advance
to BYTE : 1 and so on through the 8 bytes. You will, of course, need to be
familiar with binary arithmetic to make use of this facility.

The "C" Key

Press ing "C" simply c l e a r s the CHR$ square .

The SPACEBAR Key

Press ing the spacebar w i l l cause the h i - r e s screen window to f lash . Press ing the
SPACEBAR in conjunction with the Commodore cursor keys w i l l move the h i - r e s screen
window around the h i - r e s screen.

The COMMODORE Key

Pressing the Commodore key will exit MDDE:1 and return to MODE:0 ready to enter
any of the four modes.

The LEFT SHIFT Key

Using the LEFT SHIFT key in conjunction with the Commodore cursor keys, the size
of the screen window can be altered.

LEFT SHIFf AND RIGHT ARROW
LEFT SHIFT AND LEFT ARROW
LEFT SHIFT AND DOWN ARROW
LEFT SHIFT AND UP ARROW

EXTEND ONE CHARACTER IN WIDTH
CONTRACT ONE CHARACTER IN WIDIH
EXTEND ONE CHARACTER IN HEIGHT
CONTRACT ONE CHARACTER IN HEIGHT

The panel is updated at the completion of the change.

The "-" Key

Press ing "-" w i l l s e t the c u r r e n t INKs and PAPER colours throughout the h i - r e s
screen window.

The " N " Key

38

The " + " Key

Pressing "+" will set the current INKs and FAPE*K colours in the panel display Lo
those of the top left character position of the hi-res window.

MODE: 2

This mode deals with multicolour (4 colours per character) development and has
essentially the same commands as M0DE:1 except that numerical data entry is not
available.

The Cursor Keys

Again, the Commodore cursor keys are used to move a non-destructive cursor around
the CHR$ square which this time has only 32 cells since the resolution in
multicolour mode is only half that of the hi-res mode. To set the current cursor
position to INK 1, INK 2, INK 3 or PAPER colours press 1, 2, 3 or 4 respectively.

The "D" and "U" Keys

These keys will <D>ownload or <U>pload CHR$ data to or from the hi-res screen but
this time 4 colours are involved so the attribute flag ATTR is somewhat more
significant. If the attribute flag (ATTR) is on (=1) then pressing "D" will cause
the hi-res character to take on the current INK and PAPER colours, if ATTR is off
(0) then attributes of the hi-res screen window will be used. Initially these
will need to be set, so characters are normally downloaded with ATTR "ON" to begin
with. In fact, it is only rarely that ATTR will be set to 0 (off) during mode 2
operations. Pressing "U" with ATTR on (=1) will lift the character from the
hi-res screen together with its INK and PAPER colours and reset the current values
in the panel if these were different from those of the character being uploaded.
Pressing "U" with ATTR off (=0) will lift the character but display it in the
character cell with the current INK and PAPER colours.

The "A" Key

This is used to toggle the attribute switch, ATTR, in exactly the same way as
described in the previous section covering M0DE:1 operation.

The "E" Key

This operates in the same way as the INK and PAPER editor in M0DE:1. This time,
however, changes made to the INKS or PAPER are reflected in the CHR$ square.
Suppose INK 3 were RED and the editor was used to change INK 3 from RED to BLLE.
As soon as the new value were entered all the RED cells would change to BLLE and
the panel would be updated.

The "C" Key

This has the same function as the "C" key under MDDE:1 and merely clears the CHR$
square.

39

The SPACEBAR Key

This f l a shes the screen window and in conjunction with the Commodore cursor keys
a l lows i t s p o s i t i o n t o be changed in the h i - r e s screen .

The COMMODORE Key

Again, i t s opera t ion i s the same as t h a t for M0DE:1 and causes an e x i t t o MODE:0.

The LEFT SHIFT Key

The dimensions of t he h i - r e s window can be updated using the LEFT SHIFT key in
conjunction with the cursor keys in the manner descr ibed in M0DE:1.

The " - " Key

Press ing "-" w i l l s e t the c u r r e n t INKs and PAPER colours throughout the h i - r e s
screen window.

The " + " Key

Pressing "+" will set the current INKs and PAPER colours in the panel display to
those of the top left character position of the hi-res window.

MODE: 3

This mode is essentially concerned with operations on the screen window and works
in hi-res or 4 colour mode in exactly the same way.

The "W" and "I" Keys

Pressing "W" and then "I" will invert (l's complement) the contents of the screen
window. This means that pixels set "on" will be set "off" and vice versa. No
further operation will take place until the "W" key is released.

The "W" and "F" Keys

Pressing "W" and then "F" will flip (vertically mirror) the contents of the screen
window. If ATTR is "on" then attributes will also be flipped, if ATTR is "off"
then pixel data only will be flipped. No further operation will take place until
"W" is released.

The "W" and "M" Keys

Pressing "W" and then "M" will mirror (horizontally) the contents of the screen
window. If ATTR is "on" then attributes will also be mirrored, if ATTR is "off"
then pixel data only will be mirrored. No further operation will take place until
the "W" key is released.

The "W" and "C" Keys

Pressing "W" and then "C" will clear the pixel data in the screen window. If ATTR
is "on" then the attributes throughout the window will be set to the current INKs
and PAPER, otherwise INK 3 will be set to BLACK and INKs 1 and 2 set to WHITE
throughout the window.

The "S" Key

Pressing "S" in conjunction with the Ccnmodore cursor keys will cause the screen
window to scroll without wrap in the appropriate direction. Note that scrolling
without wrap causes data to be lost at the edges of the window.

The "R" Key

Pressing "R" in conjunction with the Ccnmodore cursor keys will cause the screen
window to scroll with wrap in the appropriate direction. Note that data scrolled
with wrap will not be lost at the edges of the window.

The HOME Key

Pressing the HOME key will cause the screen window to move to the top left of the
hi-res screen (COL = 10, ROW = 0). Its dimensions (height and length) remain
unaffected.

The RIGHT SHIFT and HOME Keys

Pressing RIGHT SHIFT and HOME together will cause the whole hi-res screen to be
cleared and the screen window to move to the top left (COL = 10, ROW = 0). The
window dimensions remain unchanged. If ATTR is 1 then the attributes throughout
the hi-res screen will be set to those of the current panel dislay.

The "V" Key

Pressing the "V" key in conjunction with the Ccnmodore up or down cursor keys will
scroll with wrap the whole of the hi-res screen from ROW 0 to ROW 24. Note that
this means that characters can be stored underneath the panel in the lower half of
the screen. If ATTR is "on" then the attributes in the hi-res screen from ROW 0
to ROW 14 (NOT ROW 24 as in the pixel data) will also be scrolled with wrap. If
ATTR is "off" attribute data is unaffected.

The "E" Key

The current INKS and PAPER can be edited in exactly the same way as they were in
M0DE-.1 and MODE:2.

The "A" Key

The attribute flag ATTR can be toggled in exactly the same way as it was in M0DE:1
and MODE:2.

The SPACEBAR Key

The screen window can be flashed and moved around the hi-res screen by pressing
the SPACEBAR key and the cursor keys in the same manner as that described in the
sections covering M0DE:1 and NODE:2.

The COMMODORE Key

Again, its operation is the same as that for M0DE:1 and is used to exit to
MODE:0.

The LEFT SHIFT Key

The dimensions of the hi-res window can be updated using the LEFT SHIFT key in
conjunction with the cursor keys in the manner described in M0DE:1.

The "-" Key

Pressing "-" wil l set the current INKs and PAPER colours throughout the hi-res
screen window.

The " + " Key

Pressing "+" will set the current INKs and PAPER colours in the panel display to
those of the top lef t character position of the hi-res window.

MODE: 4

This mode can be thought of as dealing with data movement. Most of the
operations, though not all, deal with movement between the screen and a sprite.

The "G" Key

This function is used to convert the screen window into a sprite. When "G" is
pressed the screen window will cease flashing. Releasing "G" will produce the
prompt "ENTER SPRITE NUMBER". If the number entered is not in the range 1 to 255
then "SPRITE PARAMETER OUT OF RANGE <CR>" will be printed. Note that <CR> means
"PRESS RETURN TO CONTINUE". If the sprite number entered is the number of a
sprite which has already been defined then "SPRITE ALREADY DEFINED PRESS <CR>"
will be printed. If you wish to redefine the sprite then you will need to destroy
it using the "W" key or use the more sophisticated "M" commands (see this
section). The sprite created using the "G" key will have the dimensions and
contents of the screen window. If ATTR is "on" it will have the atttributes of
the screen window, if ATTR is "off" it will have the current INK and PAPER
attributes displayed in the panel. After the sprite has been created the values
of 3PND (the end of sprite space), SPRITE (the start address of the sprite
created) and FREE MEMORY, are updated on the panel display.

The "P" Key

This function is used to <P>ut a sprite stored in memory onto the hi-res screen at
the current screen window position. The dimensions of the screen window are
unaffected. When "P" is pressed the screen window will cease flashing and when it
is released the prompt "ENTER SPRITE NUMBER" will appear. Again, if the sprite
number entered is not in the range 1 to 255 the sprite parameter out of range
42

error is generated. If the sprite number entered is the number of a sprite which
has not been created then the prompt "SPRITE NOT DEFINED PRESS <CR>" will be
displayed. If ATTR is "on" then the sprite attributes will also be <P>ut to the
screen, if ATTR is "off" then the sprite will have the attributes of the hi-res
screen area that it occupies. Note that data on the hi-res screen will be
overwritten by the sprite being <P>ut.

The "C" Key

This function is provided to enable the user to set up a sprite of user defined
dimensions without actually filling it with any data. The user will be prompted
to enter sprite number, sprite height and sprite length. Errors will be displayed
if:

The sprite number is not in the range 1 to 255
The sprite number has already been used
The height is not in the range 1 to 255
The width is not in the range 1 to 255
There is insufficient memory available

The sprite generated will have all zeros in the pixel data and have the current
INKs and PAPER attributes irrespective of ATTR. The panel display is updated.

The " W " Key

This function is provided to enable the user to delete a sprite from memory,
reclaiming the bytes used and leaving its number free for reallocation. The only
parameter entered is the sprite number and errors will be generated if the sprite
number is out of range or the sprite does not already exist. The values of SPND
and MEMORY FREE are updated in the panel display. Use this function with great
care!

The "I" Key

This function updates the value of SPRITE in the panel display to hold the start
address of the sprite whose number is entered.

The "R" Key

This function is used to <R>un an animated sequence of consecutive sprites with a
programmable delay between frames. The user is first prompted to "ENTER SPRITE
NUMBER". This should be the number of the first sprite in the series. The second
prompt is "NUMBER IN SERIES", and finally "DELAY FACTOR" which is a positive
number in the range 1 to 32767. In practice delays of more than 100 would hardly
ever be used. Errors will be generated if:

The sprite series lies outside the range 1 to 255
Any of the sprites in the series is found not to exist.

The "A" Key

Toggles ATTR as in previous modes

4 3

The "M" Key

There are seven operations prefixed by "M". The parameters input are the same in
each case. There are seven parameters and these are used to specify two windows.
In each case data moves from the "source" window to the "target" window. The
first prompt is "ENTER TARGET SPRITE NUMBER". This should be the number of the
sprite to which the data is to be moved. The next two prompts are "ENTER TARGET
COLUMN" and "ENTER TARGET ROW". The next three enter the source sprite number,
source column and source row. These specify the sprite window which holds the
data to be moved. Finally the dimensions of the window; width followed by height
are entered. The final prompt is "ENTER OPERATION". The seven operations
available are:

The "B" Operation

After the above parameters are entered the source window is block moved into the
target window, replacing the contents of the target window. If ATTR is "on" the
attributes will move with the pixel data.

The "A" Operation

Entering "A" will cause the data from the source window to be "ANDed" with the
data in the target window and the result left in the target window. ATTR is used
to control the flow of attributes.

The " 0 " Operation

Entering "0" will cause the data from the source window to be "ORed" with the data
in the target window and the result left in the target window. ATTR is used to
control the flow of attributes.

The "E" Operation

Entering "E" will cause the data from the source window to be "XQRed" with the
data in the target windcw and the result left in the target window. ATTR is used
to control the flow of attributes.

The "S" Operation

This function will rotate the source window by 90 degrees clockwise and place it
in the target sprite at the target column and row. The "SPRITE PARAMETER OUT OF
RANGE" error message will be generated if the source or target windows are not
fully contained within the source and target sprites respectively. ATTR controls
the flow of attributes. This function may produce "garbage" in four colour mode.

The "X" Operation

This function will expand the source window by a factor of 2 in the horizontal
direction and place it in the target sprite at its target column and row. The
"SPRITE PARAMETER OUT OF RANGE" error will be generated if the source and target
windows are not fully contained and attribute flow is controlled by ATTR.

The "Y" Operation

This function is identical to the "X" operation except that the expansion is in
the vertical direction.

44

In all the above operations, the source window is unaffected by the operation, but
care must be exercised to ensure that the two windows do not overlap or
unpredictable results may occur.

THE SPACEBAR Key

The screen window can be flashed and moved around the hi-res screen by pressing
the SPACEBAR key and the cursor keys in the same manner as that described in the
sections covering M0DE:1 and MDDE:2.

The COMMODORE Key

Again, its operation is the same as that for M0DE:1 and is used to exit to
MODE:0.

The LEFT SHIFT Key

The dimensions of the hi-res window can be updated using the LEFT SHIFT key in
conjunction with the cursor keys in the manner described in MDDE:1.

The "-" Key

Pressing "-" will set the current INKs and PAPER colours throughout the hi-res
screen window.

The " + " Key

Pressing "+" will set the current INKs and PAPER colours in the panel display to
those of the top left character position of the hi-res window.

MODE: 5

This mode is concerned with <L>oading and <S>aving sprites to tape or disk.

The "S" Key

Pressing "S" will cause the CHR$ square cursor to stop flashing. Releasing "S"
will produce the prompt "ENTER FILENAME". This is the filename under which the
sprites will be <S>aved and re<L>oaded.

The "L" Key

This operates in the same way as the "S" key except that the current sprites will
be lost and replaced by those sprites <L>oaded from tape or disk.

DISK COMMANDS

If you are using the disk version of the Sprite Generator then six additional
commands are available in MODE:5.

45

The "E" Key

This causes the sprite file whose filename is entered to be <E>rased fron the
disk.

The "R" Key

Pressing "R" until the CHR$ cursor stops flashing and then releasing the keys
produces the prompt "OLD NAME". You should respond by entering the name of the
file to be renamed. A second prompt then follows; "NEW NAME". The name that the
file it is to become is now entered.

The "C" Key

This operates in the same manner as the previous function, and provides a facility
for copying files. The prompts "FROM" and "TO" should be responded to with the
name of the file to be copied and the name of the new file to be copied to.

The "I" Key

Pressing "I" will initialise the disk after an error.

The "V" Key

Pressing "V" will validate the disk.

The "D" Key

This function will cause the directory to be listed to the INPUT prompt line.
RETURN is used to advance to the next filename. On completion the CHR$ cursor
will recommence flashing.

A SAMPLE SESSION WITH THE SPRITE GENERATOR

If you have not already loaded BASIC LIGHTNING then load this first. The Sprite
Generator Program can then be loaded and RUN.

For the purposes of this sample session, the arcade sprites should be used, so
respond to the first prompt "COLD OR WARM C/W" by pressing "C" to execute a COLD
start. The demo sprites should now be loaded using the following proceedure:-

1. If you are using tape, the sprites are straight after the Sprite Generator, so
this tape should be placed in the cassette player.

2. Type the Commodore key and "5" to selecte MODE: 5. Hold these two keys down
until MODE:0 changes to MODE:5 on the panel display. You are now in MODE:5.

3. Hold down "L" until the cursor in the CHR$ SQR stops flashing. Release "L"
and the prompt "ENTER FILENAME" will appear. Enter DEM01 and the arcade sprites
will load.

4. Type the Commodore key and "0" to select MODE:0 and you are now ready to begin
the session.

46

Let's start with the M0DE:1 commands, so press the Commodore key and "1" until
MODE:0 changes to M0DE:1. The principal use of this mode is to design sprites a
character at a time. The CHR$ SQR is used to do this.

The Cursor Keys

The usual Commodore cursor keys are used in conjunction with the RIGHT SHIFT key.
The LEFT SHIFT key does not operate with the cursor keys. The cursor is displayed
as a flashing square. Use the keys to move it around until you get a feel for it.
Notice that the cursor "wraps around".

In order to set a particular pixel, move the cursor to the required position,
release the cursor keys and simply press "3". Move the cursor to the next
position you want to set and press "3" again. To unset a pixel, position the
cursor and press "4". If neither of these keys ("3" or "4") is pressed, the
cursor moves non-destructively. That is to say it moves around the screen without
affecting the cells it moves across. If, however, you wish to draw lines of 3 or
4 pixels it is very annoying to keep releasing the cursor keys and pressing the
"3" alternately. To draw a line, press "3", then the appropriate cursor keys.
Once the cursor is moving "3" can be released and as long as the cursor keys are
held down, a line will bs drawn. Likewise, lines can be wiped out by holding down
the cursor keys in conjuction with "4". Now spend a few minutes getting used to
the cursor keys by creating the invader shown here as Fig. 1.

Other MODE: 1 Functions

What we're going to do now is edit your invader, Fig. 1, to become the slightly
different invader in Fig. 2. This time, though, we're not going to use the cursor
keys, but instead we'll use direct number entry.

When characters are stored in memory the pixel data is stored as 8 bytes. A byte
is an 8-bit number. This makes 64 bits which can each take the value of 1 or 0
corresponding to a pixel which is "on" or "off". The first byte is the top row of
the character. This is referred to as byte 0. The second row is byte 1 and so on
up to byte 7. The 8 bits in a byte each have their own values and from left to

47

The "D" and "U" Keys

OK, now that you've designed a character it's time to see what it will look like,
reduced to real size, on the hi-res screen. First check that ATTR is set to 0.
If it isn't press "A" until ATTR is 0 on the panel display. Now press "D" to
<D>ownload your invader. The invader should now appear at the top left of the
hi-res screen. Now type "C" to clear your CHR$ SQR. Then press "U" to <U>pload
the invader, back into the CHR$ SQR.

r i g h t these a r e :

2 t o the power seven = 128 = b i t 7
2 t o the power six = 64 = b i t 6
2 t o the power f ive = 32 = b i t 5
2 t o the power four = 16 = b i t 4
2 t o the power th ree = 8 = b i t 3
2 t o the power two = 4 = b i t 2
2 t o the power one = 2 = b i t 1
2 t o the power zero = 1 = b i t 0

L e t ' s look a t Fig. 1.

The far left bit, bit 7, is "off" = 0 * 128 = 0
The next bit, bit 6, is "on" = 1 * 64 = 64
The next bit, bit 5, is "off" = 0 * 32 = 0
The next bit, bit 4, is "off" = 0 * 16 = 0
The next bit, bit 3, is "off" = 0 * 8 = 0
The next bit, bit 2, is "off" = 0 * 4 = 0
The next bit, bit 1, is "on" = 1 * 2 = 2
The far right bit, bit 0, is "off" = 0 * 1 = 0

If we add these, 0+64+0+0+0+0+2+0=66, we get the value of byte 0, the top row,
which is 66.

Now try the calculations on the second frcm top row and you should get 126. You
don't need to understand all this binary stuff at all but it can't do any harm to
look at it. In fact the 8 numbers making up Figs. 1 and 2 are:

Fig. 1 Fig. 2

66 66
126 129
219 126
219 219
255 219
102 255
195 102
102 129

To enter Fig. 2 directly as 8 numbers, press "N" until the CHR$ cursor stops
flashing, then release the "N" key and line:

BYTE 0 IS 66 ?

will appear. We don't want to change this top row, so just press ENTER and you
will get:

BYTE 1 IS 126 ?

Enter 129 and watch the character change. Now proceed through all eight bytes
until you have changed all the Fig. 1 numbers to the Fig. 2 numbers, as in the
above list.

Now that we've completed the maths lesson we can get on with something a bit more
interesting and look at some more functions.

The hi-res screen window can also be moved from within M0DE:1. Let's move it one
character to the right. First press SPACEBAR and the current screen window will
flash. Whilst the SPACEBAR is held down, the cursor keys can be used to move the
hi-res window around. When the cursor keys are released, the panel display will
indicate the current window position. If you have moved the window correctly one

48

characrer right, you should see COL:11 ROW:0. Before we download the new
character let's look at the use of colours. Let's start by switching the
attribute flag on. Hold down "A" until ATTR displays a 1 on the panel. Let's
make this new sprite RED and BLACK.

1. Press "E" until the CHR$ cursor stops flashing.

2. Release "E" and the prompt "ENTER INK TO BE EDITED" will appear.

3. Enter 3.

4. The prompt "NEW VALUE" will now appear. Enter 2 to make the INK RED.

5. Repeat the above but this time enter the INK TO BE EDITED as 4 and the new
value as 0.

6. Press "D" to download the new character, together with it's attributes.

Now reset INK3 to 0 and INK4 to 15 using the "E" key.

Let's now look at some MODE:2 operations. To exit to MODE:0 press the Commodore
key and "0", then press the Commodore key and "2" to enter MODE:2.

The first thing you'll notice is that the 8x8 grid is replaced by an 8x4 grid.
You are now in 4 colour mode. This mode operates in a similar manner to MODE:l
but sprites cannot be entered as binary numbers. In fact 4 colour sprites can be
entered as binary numbers in M0DE:1 and used in 4 colour mode. The arithmetic is
much more complicated and beyond the scope of this manual.

The same keys (cursor keys) are used to move the CHR$ cursor around the screen and
when the appropriate cell is reached one of the 4 colours is selected by
pressing:

"1" for INK 1 Initially set to GREEN
"2" for INK 2 Initially set to RED
"3" for INK 3 Initially set to BLACK
"4" for PAPER Initially set to LIGHT GREY

Now design the character in Figure 3.

The numbers 1 to 4 indicate INKs 1 to 3 and PAPER.

Suppose you now decide to change INK 3 from BLACK to BLUE. Press "E" and release
when the CHR$ cursor stops flashing. Enter INK TO BE EDITED as 3 and the new
value as 6 (BLUE). Now watch as all the BLACK cells change to BLUE. Be careful
not to set two INKs or the PAPER to have the same value or they will become
indistinguishable. Press the SPACEBAR and the cursor keys to move the hi-res
window to COL:12, ROW:0. Note that the characters downloaded in M0DE:1 are still
on the screen and appear as "garbage".

49

Now set ATTR to 1 and press "D" to download the character to the hi-res screen.
Now let's see what happens if we make the mistake of setting INK 3 to the value of
INK 1 (GREEN). Press "E", enter 3 as the INK to be edited and 5 as the new value.
All the BLUE cells change to GREEN. Now press "E" again, and this tine edit INK
3, currently GREEN, to be BLUE again. Notice that "all" the GREEN cells turn
BLUE. Now edit INK 1 to be YELLOW (7) and nothing happens because there are no
GREEN cells to turn YELLOW.

Don't worry, all is not lost. Since ATTR is 1 and the hi-res window is over the
character you last downloaded, press "U" and hey-presto, the character re-appears
and all the INKs and PAPER are reset to the values they were, when the sprite was
downloaded.

Now use "E" to edit INK 3 (currently BLUE) to become PURPLE (4). Now press "A" to
switch ATTR to 0. Press "C" to clear the CHR$ SQR and then press "U" to upload.
This time the character re-appears with the INKs and PAPER colours that are
currently displayed in the panel. It should now be clear that if ATTR is zero
colours are not moved with the character but if ATTR is 1 the destination takes
the attributes of the source. This is true in MDDE:1 and MODE:2.

Now let's move on to something more interesting. Let's look at MODE:3.

In order to fully demonstrate the MODE: 3 cantiands we really need some data on the
screen so lets just jump ahead for a moment. Before doing that we want to return
to M0DE:1 so that we are placed in 2 colour mode (The commands also work in colour
mode). So type commodore key "0", to enter MODE:0, comnodore key "1" to enter
M0DE:1, commodore key "0" to enter to MODE:0 again and finally commodore key "3"
to enter MODE:3. Now set ATTR to 0 and press RIGHT SHIFT and HOME. This will
clear the screen and put the hi-res window to the top right i.e. COL:10 ROW:0.
This is where we jump ahead for a moment. Type commodore key 0 to exit MODE:3
then type commodore key "4" to enter MODE:4 .

Put the arcade sprite in full colour onto the hires screen, type "A" until ATTR is
1, then press "P" until the CHR$ curser stops flashing, then release and enter
"38" in response to "ENTER SPRITE NUMBER". Once the sprite has been Put to the
screen, exit using commodore key "0" and enter MODE:3 using commodore key "3".
We'll return to MODE:4 later.

The hires window should be positioned so that its top left and the top left of
sprite 38 coincide. What we have to do now is to change the size of the hi-res
window so that it has the same dimensions as sprite 38. To do this press LEFT
SHIFT and use the curser keys to extend or contract the window in the horizontal
and vertical direction. Use there keys to make the hires window have the same
dimensions as sprite 38 ie. HGT = 3 and WID = 6. We're now ready to look at seme
of the window operations. To begin with set ATTR to 1.

Press "W" and then "I" together. The window will invert (l's compliment). To
invert the window back release both keys and repeat the operation. Press "W" and
then "F" together. The window will "FLIP", ie mirror about a horizontal line
accross the centre. Since ATTR was 1 the attributes flipped along with the pixel
data. Release both keys and repeat the operation to return the original sprite.

Press "W" and them "M" together. The window will "Mirror" about its vertical
centre. Again, since ATTR was 1 the attributes were also mirrored. To mirror the
sprite back, release both keys and repeat the operation.

Lets now look at the fine scroll commands. In order to do this we'll first need
to extend the hi-res window horizontally by one character. To do this press LEFT
SHIFT and RIGHT ARROW. Let's now scroll this with wrap, right by 1 pixel. To do
this press "R" and then RIGHT ARROW. Now release both keys and repeat a further 7
times until the sprite has scrolled by 1 full character to the right. Notice that

5U

attributes are not scrolled with the character. To return the pixel data, to its
attributes press "R" and then RIGHT SHIFT and the curser keys until the separation
is catpleted.

Finally, lets look at another very useful function. Although the hires screen
itself only occupies the top 15 ROWS, it is possible to store sprites under the
text panel. Set ATTR to 0 using the "A" key. Now press "V" and use the vertical
curser keys to scroll the whole hi-res screen upward. The sprite will disappear
off the top of the screen but if you keep pressing, will eventually merge from
the bottom of the hi-res screen. This covers the use of MODE:3 commands, lets
move on to MODE:4. Before exiting set ATTR to 0 then press RIGHT SHIFT and HOME
to clear the hires screen. Now press the commodore key and 0 followed by the
commodore key and 4 to enter MODE:4.

MODE:4 operations are chiefly concerned with sprite operations as opposed to hires
window operations.

Press "P" and in response to the prompt "ENTER SPRITE NUMBER" input 2. Now use
the SPACEBAR and curser keys to move the hi-res window to the right of sprite 2.
Press "P" again and this time enter sprite number as 3. Now move the window back
to the top left of sprite 2. Use LEFT SHIFT and the curser keys to enlarge the
hi-res window to embrace both sprites 2 and 3. Press "G". In response to the
prompt "ENTER SPRITE NUMBER", input 2. "SPRITE ALREADY DEFINED <CR>" will appear.
You have tried to redefine sprite 2. Ok let's wipe sprite 2. Press "W" and in
response to "ENTER SPRITE NUMBER" type 2. Now type "G" again, enter a sprite
number of 2 and this time no error will occur. Move the hi-res window down below
the sprite above and press "P", entering 2, to Put the new sprite (comprised of
the old sprites 2 and 3) to the hi-res screen.

We now go on to consider seme of the advanced commands, all of which should be
used with great care.

Quite often it is required to produce large sprites, wider than a screen. These
are useful for scrolling landscapes etc. There is insufficient sprite space at the
moment because you have the arcade sprites in memory but the technique can be
demonstrated using a smaller sprite.

Use the "W" facility to wipe sprites 1 to 3. Set ATTR to 1. Press "C" and enter
a sprite number of 1, height of 2 and width of 8. This has created a sprite in
memory which we can now fill with data.

Hold down the "M" key until the CHR$ cursor ceases flashing and then release.
Enter target sprite number of 1, target column 0 and target row 0. Now enter
source sprite as 4, source column as 0 and source row as 0. Now enter a window
width of 4 and a widow height of 2. Finally enter the operation as "B". This
will block shift a window 4 characters wide and two characters high from the top
left of sprite 4 to the top left of sprite 1 since ATTR was 1 the attributes will
also have been moved. To examine your handiwork press "P" and enter a sprite
number of 1. The sprite should be empty, except for sprite 4 at the top left.

Hold down the "M" key again, until the CHR$ cursor ceases flashing and then
release. This time enter target sprite number, column and row as 1,4 and 0
respectively. Enter the source sprite number column and row as 8,0 and 0
respectively. Enter the window width as 2 and height as 2. Finally enter the
operation as "S". Again use "P" to put sprite 1 to the screen. Sprite 8 has been
rotated clockwise 90 degrees with attributes and placed in sprite 1 at column 4.

Using the "M" key again enter the target sprite number column and row as 1,5, and
0. Enter the source sprite number, column and row as 8,0,0. Enter a window of
height and width 2 and enter the operation as "Y". "A SPRITE PARAMETER OUT OF
RANGE" error is generated because the expanded character couldn't fit into sprite
1.

51

Now spend more time experimenting with the other "M" operations.

One last function is provided to enable the user to develop animated graphics.
For the purpose of this exercise we'll use the sequence of sprites from 100 to
109.

Press "R" until the CHR$ SQR cursor ceases flashing and release. Enter 100 as
sprite number, 09 as number in series and 30 as delay factor. Repeat this
procedure with different delays.

This completes the sample session.

5?

FUNCTION KEY SUMMARY

MODE: 1

KEYS

cursor keys in conjunction
with right shift .

D

0

A

E

N

c

SPACEBAR

SPACEBAR & CURSOR KEYS

COMMODORE KEY

-

+

MODE: 2

KEYS

cursor keys in conjuction
with RIGHT SHIFT

D

U

A

FUNCTIONS

Movement of the CHR$ cursor

Download cu r ren t CHR$ SQR to h i - r e s screen
window.

Upload cha rac te r from h i - r e s window to CHR$ SQR.

Toggle a t t r i b u t e f l ag .

Enter INK/PAPER e d i t i n g mode.

Enter numerical en t ry mode.

Clear CHR$ SQR.

Flash h i - r e s window.

More h i - r e s windows.

Change mode.

F i l l h i - r e s window with cur ren t a t t r i b u t e s .

Set INKs and PAPER to those of top l e f t h i - r e s
window.

FUNCTIONS

Movement of CHR$ cursor

Download cur ren t CHR$ SQR t o h i - r e s screen
window.

Upload charac te r frorm h i - r e s window to CHR$
Square.

Toggle a t t r i b u t e f l ag .

E

C

SPACEBAR

SPACEBAR & CURSOR KEYS

COMMODORE KEY

-

+

MODE: 3

KEYS

W & I

W & F

W & M

W & C

S & Cursor keys

R & Cursor keys

HOME

RIGHT SHIFT HOME

V & Cursor keys

E

A

SPACEBAR

SPACEBAR & Cursor keys

COMMODORE KEY

LEFT SHIFr & Cursor keys

-

+

Enter INK/PAPER editing mode.

Clear CHR$ SQR.

Flash hi-res window.

More hi-res windows.

Change mode.

Fill hi-res window with current attributes.

Set INKS and PAPER to those of top left hi-res
window.

FUNCTIONS

Invert screen window.

Flip screen window.

Mirror screen window.

Clear screen window.

Fine scroll screen window without wrap.

Find scroll screen window with wrap.

Move hi-res window to top left of hi-res
screen.

Clear hi-res screen and move hi-res window
to top left of hi-res screen.

Scroll hi-res screen vertically with wrap.

Enter INK/PAPER editing mode.

Toggle attribute flag.

Flash screen window.

Move hires window.

Change mode.

Modify hires window dimensions.

Fill hi-res window with current attributes.

Set INKs and PAPER to those of top left hi-res
window.

S3

MODE: 4

KEYS

G

P

C

W

I

R

A

M then B

M then A

M then 0

M then E

M then S

M then X

M then Y

SPACEBAR

SPACEBAR & Cursor Keys

COMMODORE KEY

LEFT SHIFT & Cursor Keys

-

+

FUNCTIONS

Get hires window and define as a sprite.

Put sprite to the current hires window
position.

Create sprite of user defined dimensions.

Wipe sprite and reclaim memory.

Interrogate sprite.

Run animated sequence of sprites.

Toggle attribute flag.

Block shift sprite.

AND sprites.

OR sprites.

XOR sprites.

Spin sprites.

XPAND sprite in X direction.

XPAND sprite in Y direction.

Flash screen window.

Move hi-res window.

Change mode.

Modify hi-res window dimensions.

Fill hi-res window with current attributes.

Set INKs and PAPER to those of top left hi-res
window.

5 4

MODE: 5

KEYS

S

L

E

R

C

I

V

D

COMMODORE KEY

FUNCTIONS

SAVE sprites.

LOAD sprites.

ERASE sprite file (disk only).

RENAME sprite file (disk only).

COPY sprite file (disk only).

INITIALISE DISK (disk only).

VALIDATE DISK (disk only).

List directory (disk only).

Change mode.

55

APPENDIX A: BASIC LIGHTNING COMMAND SUMMARY

Notation

Angle brackets are used to enclose symbols. Most of these are self-explanatory:
<integer>, <variable> etc. A <label> is either an <integer> or an <identifier>,
being a letter followed by zero or more alphanumeric characters. "I" is used to
denote "or". Items inside square brackets are optional and items in curly
brackets can be repeated zero or more times.

1. Structured Programming and Miscellaneous Commands

This is used before a hexadecimal number,

e.g. J=DEEK($CO00)

' (apostrophe)

This is equivalent to :REM and is used before comments.

=<expression>

COMMAND: When used as a command, this is used to signify the end of a multi-line
user defined function, equating the value of the function to the value of the
expression.

ALLOCATE

ALLOCATE <expression>,<expression>,<expression>,<expression>

COMMAND: This allocates the amount of memory to be used for the variables for
concurrent tasks 1, 2, 3 and 4. Thus ALLOCATE 0,0,0,0 will reserve no memory, and
ALLOCATE 100,0,0,0 would reserve 100 bytes for task number 1.

This command stops execution of any background tasks and clears all variables from
the foreground program and it may not be used by one of the background tasks.

Associated keywords: HALT, IMPORT, TASK.

CASE

CASE <expression>

COMMAND: This is used in conjunction with OF and CASEND to select between several
courses of action.

Associated keywords: OF, CASEND.

bb

CASEND

COMMAND: This denotes the end of a CASE statement.

Associated words: CASE, OF.

CELSE

COMMAND: This i s used as p a r t of t he m u l t i p l e - l i n e IF-THEN-ELSE in conjunction
with CIF and CEND.

CEND

COMMAND: This is used to mark the end of a multi-line IF-THEN-ELSE.

CFN

CFN<label>|CFN<label> (<parameter>/", <parameter>j-)

FUNCTION: Returns the value given by a multi-line function.

Associated keywords: LABEL, PROC, =, LOCAL.

CIF

CIF<expression>

COMMAND: This is the multiple-line equivalent of IF. The end of the statement is
denoted by CEND.

COMM0N%

COMMON%(<expression>)

This i s a pseudo-array which i s shared by a l l f ive concurrent t a sks . I t conta ins
64 elements and can be used t o pass values between the t a s k s .

DSAVE

DSAVE <str ing> T, <expression>[~, <expression>~j~|

COMMAND: This is equivalent to SAVE, the difference being that the default device
number is 8 (the disk drive).

Associated keywords: DLOAD

DEEK

DEEK (<expression>)

FUNCTION: This is the double-byte version of PEEK - it returns the value of two

memory locations in the usual low-byte/high-byte order.

57

e.g. I=DEEK(49152)
is equivalent to
I=PEEK(49152)+256*PEEK(49153)

Associated keywords: DOKE

DIR [~<f i lename> {", <device>ll

COMMAND: print disk directory.

DISABLE

COMMAND: This d i sab les the run-s top key. I t should be used as a carmand i n s ide a
program r a t h e r than being typed from d i r e c t mode.

DLOAD

DLOAD <string> f, <expression> L <expression>] J

COMMAND: This is equivalent to IDAD, the difference being that the default device
number is 8 (the disk drive).

Associated keywords: BSAVE

DOKE

DOKE <expression>,<expression>

COMMAND: This is the double-byte version of POKE.

e.g. DOKE A,B
is equivalent to
POKE A,B AND 255 : POKE A+l, INT(B/256)

ELSE

This is an addition to the IF THEN canmand already existing in BASIC. If the
condition is false, the part after the ELSE is executed. If it is true, the part
after THEN is executed.

Associated keywords: IF, THEN.

EXIT

COMMAND: This is used to leave a loop prematurely. It can be used with FOR-NEXT,
REPEAT-UNTIL or WHILE-WEND loops.

Associated keywords: FOR, NEXT, WHILE, WEND, REPEAT, UNTIL.

N.B. When using EXIT in conjunction with FOR-NEXT loops, each NEXT must
correspond to one FOR only.

FALSE

FUNCTION: This returns a value of zero.

Associated keywords: TRUE.
58

HALT

HALT <expression>

COMMAND: This stops execution of a background task.

Associated keywords: TASK, ALLOCATE.

HEX$

HEX$(<expression>)

FUNCTION: This returns a string with the hexadecimal representation of the
numerical value of <expression>. The string is always five characters long, and
in the form $XXXX.

e.g. HEX$(60000) returns "$EA60"

IMPORT

IMPORT(<expression>,<expression>)

FUNCTION: The first expression is a task number; this function returns the value
of the second expression as evaluated by that task. A task number of zero means
the foreground task. Values cannot be passed when a command is actually being
executed - for example in the middle of an INPUT statement.

LABEL

LABEL<identif ier> | IABEL<identif ier> (<parameter>-f, <parameter> })

LA BET, is used to define a label for use by QOTOs, GOSUBs and RESTORES or to define
procedures and multi-line functions.

To define labels for GOTOs, GOSUBs or RESTORES, the LABEL is just followed by the
identifier.

To define procedures and multiple-line functions, the label is followed by a list
of parameters inside brackets. If you want the actual parameter to be altered by
the procedure, precede the variable name with VAR. ARRAYS MUST BE DECLARED AS VAR
PARAMETERS.

LOCAL

LOCAL <variable>|,<variable>|

This is used inside a procedure to create variables (arrays are not allowed) which
will be destroyed upon leaving the procedure or function. Variables created in
this way are independent of those in the main program.

59

OF

OF <expression>

COMMAND: This is used in conjunction with the CASE and CASEND statements. If the
<expression> after the OF is the same value as the <expression> after the CASE,
the set of commands until the next OF or CASEND are obeyed, otherwise they are
not.

Also, the use of OF OR is allowed - this results in the execution of the following
statements only if none of the OFs in the current CASE have been executed.

Associated keywords: CASE, CASEND.

OLD

COMMAND: Restore NEWed program.

PROC

PROC<label>| PROC<label> (<parameter>f, <parameter>].)

(Simple variables may be used as <parameters>; to pass an array as a parameter,
follow the array name with an empty set of brackets: A$(), A O).

COMMAND: Calls a procedure using the specified parameters (if any).

Associated keywords: LABEL, PROCEND, SIZE, LOCAL.

PROCEND

COMMAND: This is used at the end of a procedure definition.

Associated keywords: PROC, LABEL, LOCAL.

PULL

COMMAND: This removes one level of subroutine nesting from the stack.

Associated keywords: GOSUB, RETURN.

REPEAT

COMMAND: This is used in conjunction with the UNTIL command to set up a loop for
situations in which it is required to execute the body of the loop at least once.

Associated keywords: UNTIL.

RPT

COMMAND: This executes a graphics command several times.

RPT<expression>,<graphics canmand>

For example:

RPT 8, WRR1

GO

is equivalent to

FOR 1=0 TO 7 : WRR1 : NEXT

but the first version is faster.

SIZE

SIZE(<variable>,<expression>)

FUNCTION: This gives the size of an array +1. If <expression> = 0, the number of
dimensions is returned.

TASK

TASK <expression>,<label>

This initialises execution of a background task at <label>. The <expression> is
the task number and may be 1, 2, 3 or 4.

TRUE

FUNCTION: This returns a value of -1.

Associated keywords: FALSE

UNTIL

UNTIL <expression>

This is used in conjunction with REPEAT, the UNTIL going at the end of the loop.
Execution of the loop continues until the <expression> is non-zero.

Associated keywords: REPEAT

WEND

COMMAND: This is used in conjunction with the WHILE catmand: WEND marks the end
of the loop.

Associated keywords: WHILE

WHILE

WHILE <expression>

COMMAND: Sets up a loop, in conjunction with the WEND where it is required to
execute the body of the loop zero or more times.

Associated keywords: WEND

PI

FUNCTION: Returns the value of 3.14159265

61

2. Sound and Graphics Commands

NOTE: In the following commands, if the parameters are missing, the interpreter
uses existing values. This only applies to the carmands marked with an asterisk
below.

In describing operations on windows,

Wl XDR W2 -> Wl

would mean:

"Window 1 exclusive-ored with window 2 goes into window 1"

'Si' and 'S21 are used in the same way, meaning 'sprite'.

IDEAL pseudo-variables:

SPN COL ROW WID HOT
SPN2 C0L2 ROW2
NUM INC ATR
OCOL CROW

.2C0L <Sprite no.>

COMMAND: puts a hardware sprite (number is zero to 7) into two-colour mode.

.4C0L <Sprite #>

COMMAND: puts a hardware sprite into 4-colour mode.

.COL <sprite #>,<colour>

COMMAND: sets the colour of a hardware sprite. (<colour> is 0..15).

.COLO <colour>

COMMAND: sets multicolour sprite colour #0

.COL1 <colour>

COMMAND: sets multicolour sprite colour #1

.HIT <sprite #>

FUNCTION: returns a true value if the hardware sprite has hit something.

.OFF <sprite #>

COMMAND: removes a hardware sprite form the screen.

62

.ON <sprite #>

COMMAND: turns on a hardware sprite.

.OVER <sprite #>

COMMAND: Background is given priority over the hardware sprite.

.SET <sprite#>,<definition#>

COMMAND: Associate a hardware sprite with its definition.

.SHRINKX <sprite #>

COMMAND: The sprite is given normal size in the X-direction.

.SHRINKY <sprite #>

COMMAND: The sprite is given normal size in the Y-direction.

.UNDER <sprite #>

COMMAND: The background goes under the hardware sprite.

.XPANDX <sprite #>

COMMAND: The sprite is expanded to double size in the X-direction.

.XPANDY <sprite #>

COMMAND: The sprite is expanded to double size in the Y-direction.

•XPOS <sprite #>,<position>

COMMAND: Sets up the X position of hardware sprite.

ADSR voice,attack,decay,sustain,release

COMMAND: specify envelope

.YPOS <sprite #>,<position>

COMMAND: Sets up Y position of hardware sprite.

AFA(SPN)

FUNCTION: Returns the a t t r i b u t e f i e ld address of s p r i t e . - 1 i f non-ex is tan t .

AFA2(SPN)

FUNCTION: Returns the 2ndary attribute field address of a sprite. -1 if
non-existant.

63

* AND%AND SPN,ROW,COL,HGT,WID,SPN2,ROW2,COL2

COMMAND: Wl AND W2 ->W1
Wl AND W2 ->W2

* AND%ELK SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: W1->W2
Wl AND W2->W1

* AND%OR SPN,COL,ROW,WID,HGT,SPN2rCOL2,ROW2

COMMAND: Wl OR W2 ->W2
Wl AND W2 ->W1

* AND%XOR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Wl XDR W2 ->W2
Wl AND W2 ->W1

ATT20N

COMMAND: Enables movement of both sets of attributes with the data movement
commands.

* ATTDN SPN,COL,R0W,WID,HGT

COMMAND: Scrolls down all attributes in a window by 1 character block with wrap.

* ATTGET SPN,COL,ROW

COMMAND: Puts the attribute at the specified position into ATR.

* ATTL SPN,COL,ROW,WID,HGT

COMMAND: Scrolls attributes in a window left by one character with wrap.

ATIOFF

COMMAND: Disables movement of attributes when pixel data is moved.

ATTON

COMMAND: Enables movement of primary set of attributes only.

* ATTR SPN,COL,R0W,WID,HGT

COMMAND: Scrolls attributes in window right with wrap.

* ATTUP SPN,COL,RCW,WID,HGT

COMMAND: Scrolls attributes in window up with wrap.

* BLK%AND SPN,CDL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Wl AND W2 ->W2
W2 -> Wl

* BLK%HLK SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: W1->W2
W2->W1

* BLK%OR SPN,ROW,COL,HGT,WID,SPN2,ROW2,COL2

COMMAND: Wl OR W2 ->W2
W2 ->W1

* BLK%XOR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Wl XOR W2 ->W2
W2 -> Wl

* BOX SPN,COL,ROW,WID,HGT

COMMAND: Fills a block of pixels inside a sprite - this catmand is dependant on
the current value of MODE.

* CHAR SPN,C0L,ROW,NUyi

COMMAND: Puts a character in a sprite at character block position specified.

Value of NUM

0 to 255 ASCII characters
256 to 511 reverse ASCII characters
512 to 767 display codes
1024 to 1279 double width ASCII characters
1280 to 1535 reverse double width ASCII characters
1536 to 1791 double width display codes

* CPYAND SPN,SPN2

COMMAND: SI AND S2 -> S2

* CPYBLK SPN,SPN2 Si -> S2
* CPYOR SPN,SPN2 Si OR S2 -> S2
* CPYXOR SPN,SPN2 Si XOR S2 -> S2

CUTOFF frequency

COMMAND: Set cutoff frequency (0..2047) for filter.

DBLANK

COMMAND: Blanks the screen to border colour.

65

DFA(SPN)

FUNCTION: Returns pixel data address of a sprite. -1 if non-existant.

DMERGE " filename "L device")

COMMAND: Merge sprites frcm disk to those in memory.

* DRAW SPN,COL,ROW,COL2,ROW2

COMMAND: Draws a line from (COL,ROW) to (COL2,ROW2).

DRBCALL "filename " [, device"]

COMMAND: Load new sprites from disk.

DSHOW

COMMAND: Enable screen display (opposite of DBLANK)

DSTORE " filename " [, device]

COMMAND: Save sprites to disk.

DTCTOFF

COMMAND: Turn off c o l l i s i o n de tec t ion

DTCTON

COMMAND: Turn on co l l i s i on de tec t ion

ENV

FUNCTION: Return output frcm oscillator 3 envelope generator.

FILTER voice,flag

COMMAND: enable/disable filtering of a voice.

FIRE1

FUNCTION: Return true flag if joystick in port 1 has fire button pressed.

FIRE2

FUNCTION: Return true flag if joystick in port 2 has fire button pressed.

* FLIP SPN,COL,ROW,WID,HGT

COMMAND: Flip over window top to bottom.

66

* FLIPA SPN,COL,ROW,WID,HGT

COMMAND: Flip over attributes top to bottom.

FRQ voice, frequency

COMMAND: Set frequency

* GETAND: SPN,COL,ROW

Copy screen at (COL,ROW) into SPN with AND.

Similarly, GETBLK, GETOR and GETXOR

H38COL

COMMAND: Shrink display.

H40COL

COMMAND: Expand display to normal size

HBORDER <colour>

COMMAND: Sets border colour for hi-resolution screen.

HIRES

COMMAND: Go into hires mode.

HPAPER <colour>

COMMAND: Set hi-res background colour (applies to 4-colour mode only).

INK <colour>

COMMAND: Set INK colour for printing.

* INV SPN,COL,ROW,WID,HGT

COMMAND: Invert window.

JS1

FUNCTION: Returns direction of joystick in port 1.

JS2

FUNCTION: Returns direction of joystick in port 2.

KB(n)

FUNCTION: Return true value if key no. n is pressed. 67

LCASE

UuMMAND: go into lower oa&e.

LORES

COMMAND: go in to LORES node.

LPX

FUNCTION: Returns l ight -pen X-posi t ion.

LPY

FUNCTION: Returns l igh t -pen Y-posi t ion.

* MAR SPN,COL,ROW,WID,HGT

COMMAND: Mirror attributes left-to-right in window.

MERGE {^"filename" £,device^

COMMAND: Load in sprites, keeping existing ones.

* MIR SPN,COL,RCW,WID,HGT

COMMAND: Mirror data left-to-right in window.

MODE <expression>

COMMAND: Sets node number for PLOT, POLY, BOX etc.:

0 to 3 - colour to be plotted in multi-colour code.
0 or 1 - clear point in 2 colour mode.
2 or 3 - set point in 2 colour mode.
4 - invert point.

MONO

COMMAND: Puts hardware in to 2-colour node.

* MDVAND SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Wl AND W2 -> W2

* MOVATT SPN,COL,R0W,WID,HGT,SPN2,COL2,ROW2 (move attributes only)
* MOVBLK SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2 Wl -> W2
* MOVOR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2 Wl OR W2 -> W2
* MOVXOR SPN,COL,R0W,WID,HGT,SPN2,COL2,ROW2 Wl XOR W2 -> W2

MUTE flag

COMMAND: enables/disable muting of voice 3.

68

MUSIC voice,length

COMMAND: Sound note; length in 60ths of a second.

NOISE voice

COMMAND: Set up voice to generate noise.

MULTI

COMMAND: Puts hardware into 4-colour mode.

* OR%AND SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
* OR%BLK SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
* 0R%OR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
* OR%XOR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

OSC

FUNCTION: Return output from voice 3 oscillator.

PASS N

COMMAND: Set filter to low pass (n=0), high pass (1), band pass (2), or notch
reject (3).

* PLOT SPN,COL,ROW

COMMAND: Plot a point.

POINT (SPN,COL,ROW)

FUNCTION: Return value of point referenced.

0 or 1 if in S2C0L mode.
0, 1, 2, or 3 if in S4COL mode.

* POLY SPN,COL,ROW,WID,HGT,NUM,INC

COMMAND: Draw polygon

PULSE voice,width

COMMAND: Set voice to generate pulse wave form; 0<width<4096.

* PUTAND SPN,COL,ROW

Move sprite to screen at (COL,ROW), ANDing with screen.

69

* PUTBLK SPN,COL2,ROW2 move directly to screen.
* PUTOR SPN,COL2,ROW2 OR with screen.

* PUTXOR SFN,COL2,ROW2 XOR with screen.

* PUTCHR SPN,COL,ROW,NUM

Copy character block frcm sprite into character memory. NUM same as for CHAR.

RECALL f" "filename" Q device"] 1

COMMAND: Load in new sprites.

RESERVE <expression>

COMMAND: Reserve space for sprites.

RESET

COMMAND: Erase all sprites and reset sprite storage.

RESEQ

COMMAND: Renumber s p r i t e s .

RESONANCE n

COMMAND: Set resonance (0..15) of filter.

RING voice,flag

COMMAND: enable/disable ring modulation.

RPT <expr>, command

COMMAND: Execute a graphics command more than once.

S2COL

COMMAND: Puts software in to 2-colour mode.

S4C0L

COMMAND: Puts software into 4-colour mode.

SAW voice

COMMAND: Set voice to generate sawtooth waves.

SCAN(SPN,COL,ROW,WID,HGT)

FUNCTION: Returns true value if window contains data.

70

* SCL1 SPN,COL,ROW,WID,HGT

COMMAND: S c r o l l l e f t by one p i x e l ,

s im i l a r ly : SCL2,SCL8,SCR1,SCR2,SCR8

* SCLR SPN,ATR

COMMAND: Clear s p r i t e .

SCRLX <expr>

COMMAND: Shi f t screen l e f t / r i g h t by 0 t o 7 p i x e l s .

* SCROLL SPN,COL,ROW,WID,HGT,NUM

COMMAND: Scroll window vertically by NLM pixels. NUM>0 = up, NLM<0

SCRLbf <expr>

COMMAND: Shift screen up/down by 0 to 7 pixels.

* SETA SPN,COL,ROW,WID,HGT,ATR

COMMAND: Set attributes in window to ATR

SIDCLR

COMMAND: Reset sound chip.

* SPIN SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Rotate Wl ->W2 by 90 degrees clockwise.

* SPRCONV SPN,COL,R0W,SPN2

COMMAND: Convert software to hardware sprite.

* SPRITE SPN,WID,HGT

COMMAND: Create new sprite.

STORE f" "filename " [_, device] J

COMMAND: Save sprites.

STRPLOT SPN,COL,ROW,A$,<offset>

COMMAND: Put text in sprite (cannot be used with RPT).

71

Offset
1 normal characters

256 inverse characters
1024 double-width characters
1280 double-width inverse characters
2048 double-spaced characters
2304 double-spaced inverse characters

* SWAPATT SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Swap attributes in windows.

SYNC voice, flag

COMMAND: enable/disable synchronisation of a voice

TBORDER <colour>

COMMAND: Set text border colour

TPAPER <colour>

COMMAND: Set text paper colour.

TRI voice

COMMAND: Set voice to generate triangular waves.

LCASE

COMMAND: Go into upper case.

VOLUME number

COMMAND: Set master volume (0..15).

WCLR SPN,COL,ROW,WID,H3T,ATR

COMMAND: Clear window.

WINDOW <expr>

COMMAND: Set up hires/text window.

* WIPE SPN

COMMAND: Remove sprite frati sprite table.

* WRAP SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2,NUM

COMMAND: Scroll window by NUM pixels with wrap.

7?

* WRL1 SPN,COL,R0W,WID,HGT

COMMAND: Wrap window one pixel left.

Similarly - WRL2,WRL8,WRRl,WRR8

* XDR%AND SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
Wl XDR W2 -> Wl, Wl AND W2 -> Wl

* XDRIBLK SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
Wl XDR W2 -> Wl, Wl -> W2

* XOR%OR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
Wl XDR W2 -> Wl, Wl OR W2 -> W2

* XQR%XOR SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2
Wl XDR W2 -> Wl Wl XDR W2 -> W2

* XPANDX SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Expand Wl -> W2 in X direction.

* XPANDY SPN,COL,ROW,WID,HGT,SPN2,COL2,ROW2

COMMAND: Expand Wl -> W2 in Y direction.

73

APPENDIX B: BASIC LIGHTNING TOKENS

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

$BO
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
$BE
$BF

$C0
$C1
$C2
$C3
$C4
$C5
$C6
$C7
$C8
$C9
$CA
$CB
$CC
$CD
$CE
$CF

$D0
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
$DA
$DB
SDC
$DD
$DE
$DF

OR
>
=
<
SGN
INT'
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
COS
SIN

TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$
GO
ELSE
HEX$
DEEK
TRUE

IMPORT
CFN
SIZE
FALSE
(RESERVED
LPX
LPY
COMMON%
CROW
CCOL
ATR
INC
NUM
ROW2
COL2
SPN2

-
-
-
-
SG.
-
AB.
US.
FR.
-
SQ.
RN.
-
EX.
-
SI.

-
AT.
PE.
-
STR.
VA.
AS.
CH.
LEF.
RI.
M.
-
EL.
H.
DEEK.
TR.

TM.
CF.
SIZ.
FA.

FOR FUTURE EXPANSION
LP.
-
COM.
CR.
CC.
-
-
NTU.
RO.
COL.
SPN.

Taken

123
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
163
169
170
171
172
173
174
175

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F

$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F

$A0
$A1
$A2
$A3
$A4
$A5
$A6
$A7
$A8
$A9
$AA
$AB
$AC
SAD
$AE
$AF

Keyword

END
FOR
NEXT
DATA
INPUT#
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
REM

STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT*
PRINT
CONT
LIST
CLR
CMD
SYS
OPEN

CLOSE
GET
NEW
TAB(
TO
FN
SPC(
THEN
NOT
STEP
+
-
*
/

AND

E.
F.
N.
D.
I.
-
DI.
R.
L.
G.
RU.
-
RES.
GOS.
RE.
-

ST.
O.

w.
LO.
SA.
V.
DE.
P.
PR.
p
C.
LI.
CL.
CM.
SY.
OP.

CLO.
GE.
NE.
T.
-
-
SP.
TO.
NO.
S.
-
-
-
-
-
A.

74

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

$E0
$E1
$E2
$E3
$E4
$E5
$E6
$E7
$E8
$E9
$EA
$EB
$EC
$ED
$EE
$EF

$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

HGT
WID
ROW
COL
SPN
TASK
HALT
REPEAT
UNTIL
WHILE
WEND
CIF
CELSE
CEND
LABEL
DOKE

EXIT
ALLOCATE
DISABLE
PULL
DLOAD
DSAVE
VAR
LOCAL
PROCEND
PRCC
CASEND
OF
CASE
RPT
SETATR
PI

as.
WI.
-
-
-
TAS.
HA.
REP.
UN.
WH.
WE.
CI.
CE.
CEN.
LA.
DO.

EX.
AL.
DIS.
PU.
DL.
DS.
-
LOC.
PRO.
-
CA.
-
-
RP.
SE.
-

1,16
1,17
1,18
1,19
1,20
1,21
1,22
1,23
1,24
1,25
1,26
1,27
1,28
1,29
1,30
1,31

1,32
1,33
1,34
1,35
1,36
1,37
1,38
1,39
1,40
1,41
1,42
1,43
1,44
1,45
1,46
1,47

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F

$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F

SCRLX
WRR1
WRL1
SCR1
SCL1
WRR2
WRL2
SCR2
SCL2
WRR8
WRL8
SCR8
SCL8
ATTR
ATTL
ATTUP

ATTDN
CHAR
WINDOW
MULTI
MONO
TBORDER
HBORDER
TPAPER
HPAPER
WRAP
SCROLL
INK
SETA
ATTGET
ATT20N
ATTON

SCR.
WR.
WRL.
-
-
-
-
-
-
-
-
-
-
ATT.
-
ATTU.

ATTD.
CHA.
WIN.
MU.
MON.
TB.
HB.
TP.
HP.
WRA.
SCRO.
-
-
ATTG.
ATT2.
ATTO.

'IWO-BYTE TOKENS

1,0
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1,10
1,11
1,12
1,13
1,14
1,15

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B

$oc
$0D
$0E
$0F

unused
SCLR
SPRITE
WIPE
RESET
H38COL
LORES
HIRES
PLOT
BOX
POLY
DRAW
MODE
S2COL
S4COL
H40COL

9C.
SPR.
WIP.
RESE.
H3.
LOR.
HI.
PL.
BO.
POL.
DR.
MO.
S2.
S4.
H4.

1,48
1,49
1,50
1,51
1,52
1,53
1,54
1,55
1,56
1,57
1,58
1,59
1,60
1,61
1,62
1,63

$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F

AITOFF
MIR
MAR
WCLR
INV
SPIN
MOVBLK
MOVXOR
MOVAND
MOVOR
MOVATT
XPANDX
XPANDY
GETBLK
POTBLK
CPYBLK

ATTOF
-
MA.

wc.
-
SPI.
MOV.
MOVX.
MOVA.
MOVO.
MOVAT
X.
-
GET.
PUT.
CP.

75

1,64

1,65

1,66

1,67
1,68

1,69

1,70
1 ,71

1,72

1 ,73

1,74

1 ,75

1,76
1,77

1 ,78

1,79

1,80

1 ,81

1,82

1 ,83
1,84

1 ,85

1,86
1,87

1,88

1,89

1,90

1 ,91
1,92

1 ,93

1,94

1 ,95

1,96

1,97

1 ,98

1,99

1,100
1 ,101

1,102

1,103

1,104

1,105

1,106
1,107

1,108

1,109

1,110

1 ,111

$40

$4L

$42

$43
$44

$45

$46
$47

$48

$49

$4A

$4B

$4C
$4D

$4E
$4F

$50

$51
$52

$53
$54

$55

$56
$57

$58

$59
$5A

$5B

$5C

$5D

$5E

$5F

$60

$61
$62

$63

$64

$65

$66
$67

$68

$69
$6A

$6B

$6C

$6D
$6E

$6F

GETXOR

PUTXOR

CFYXOR

GETOR

PUTOR

CPYOR

GETAND

PUTAND

CPYAND
DBLANK

DSHOW

PUTCHR

LCASE

UCASE
SPRCONV

.ON

. O F F

• SET

F L I P A

.4COL

. 2 0 0 L

.COLO

. C O L 1

.XPANDX

.SHRINKX

.XPANDY

.SHRINKY

.XPOS

.YPOS

.COL

.OVER

.UNDER

SWAPATT

DTCTON

DTCTOFF

BLK%BLK

OR%BLK

AND%BLK

XOR%BLK

BLK%CR

OR%OR

AND%OR

XOR%OR
BLK%AND

OR%AND

AND%AND

XOR%AND

BLK%XOR

GETX.

PUTX.

CPYX.

GETO.

PUTO.

CPYO.

GETA.

PUTA.

CPYA.

DB.

DSH.

PUTC.

LC.

UC.

SPRC.

••
. O F .

. S .

EL.

. 4 .

. 2 .

. C .

-
.X.

• SH.

-
-
. X P O .

.Y.

-
.ov.
.u.
sw.
DT.

DTCTOF.

BLK.

OR.
AND.

XO.

BLK%0.

OR%0.

AND%0.

XOR%0.

BLK%A.

OR%A.

AND%A.
XOR%A.

BLK%X.

1,112

1 ,113
1,114

1 ,115

1,116
1 ,117

1 ,118

1,119
1 ,120

1 ,121

1,122

1 ,123

1,124

1 ,125

1 ,126
1,127

2 , 0

2 , 1
2 , 2

2 , 3
2 , 4

2 , 5

2 , 6
2 , 7

2 , 8

2 , 9

2,10
2,11
2,12
2,13
2,14
2,15

2,16
2,17
2,18
2,19
2,20
2,21
2,22
2,23
2,24
2,25
2,26
2,27
2,28
2,29
2,30
2,31

$70

$71

$73
$74

$75

$76
$77

$78

$79

$7A

$7B

$7C
$7D

$7E
$7F

$00

$01

$02

$03
$04

$05

$06
$07

$08

$09

$0A
$0B

$0C

$0D

$0E

$0F

$10

$11
$12

$13

$14

$15

$16

$17
$18

$19

$1A

$1B

$1C

$1D
$1E

$1F

OR%XOR

AND%XOR
XOR%XOR

STRPLOT

FLIP
.HIT

SCAN

POINT

DFA

AFA2

AFA

KB

FIRE1

FIRE2

J S 1
JS2

unused
BLACK

WHITE

RED
CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

BROWN

.RED

GRAY1

GRAY2

.GREEN

.BLUE

GRAY3

OSC
ENV

FRQ

NOISE

PULSE

SAW
TRI

RING

SYNC

MUSIC
ADSR

FILTER

MUTE
VOLUME

CUTOFF

OR%X.

AND%X.

XOR%X.

S T R P .

-
.H.

SCA.

P O I .
DF.
AF.

-
-
F I .

-
J .

-

BLA.

WHIT.

-
CY.

PUR.

GR.

BLU.

Y.

ORA.

BR.
.R.

GRA.

-
.G.
. B .

-
OS.

-
-
N O I .

P U L S .

-
-
R I N .
SYN.

MUS.

AD.

FIL.

MUT.

VO.

CU.

76

2,32
2,33
2,34
2,35
2,36
2,37
2,38
2,39
2,40
2,41
2,42
2,43
2,44
2,45

$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D

RESONANCE
PASS
SCRLY
RECALL
STORE
SIDCLR
MERGE
RESEQ
MEM
OLD
DIR
DSTORE
DRECALL
DMERGE

RESO.
PAS.
-
REC.
STOR.
SID.
ME.
-
-
-
-
DST.
DRE.
DM.

APPENDIX C-SPRITE STORAGE FORMAT

The location of the start of sprite storage is held in $2FPC and can be obtained
using DEEK($2FPC). Similarly, the end of sprites in memory (+1) is obtained using
DEEK($2FFE).

Each sprite is stored in memory as follows:-

byte 0 = sprite number.
bytes 1/2 = offset from start of sprite to primary attribute data.
bytes 3/4 = offset from start of sprite to secondary attribute data.
byte 5 = width of sprite in character blocks.
byte 6 = height of sprite in character blocks.
byte 7 onwards = width*height*8 bytes pixel data, then width*height
bytes primary attribute data followed by width*height bytes secondary
attributes data.

After the last sprite in memory, a dummy zero is stored where the number of the
next sprite would be expected.

Each sprite uses up 10*width*height+7 bytes in memory.

77

APPENDIX D-GLOSSARY OF TERMS

actual parameters

ADSR

AND

attack

attribute

bit-map mode

BLK

compiler

decay

envelope

filter

formal parameters

four-colour mode

frequency

hi-res mode

label

local variable

Variable or expression used when calling a procedure
or function using PROC or CFN.

Attack-decay-sustain-release envelope.

In terms of pixel data, a logical operation indicating
that the destination pixel is set only if both source and
destination pixels are already set.

The rate at which a musical note reaches its peak
volume.

Data associated with each character block indicating the
colours to be used for displaying pixel data. In
two-colour mode, one byte of attribute data is associated
with each character block. In four-colour mode,
two bytes of attribute data are associated with each
character block.

A screen display mode, enabled by the HIRES ccmmand,
in which each pixel can be individually set or cleared.

A prefix/suffix used for data movement commands
indicating that pixel data at the destination of a
move command is to be overwritten.

A program which takes a program written in BASIC
or seme other high-level language and translates it
into machine code.

The rate at which a musical note falls from its peak
volume to the sustain volume.

The shape of the volume of a musical note over time.

An electronic circuit which removes certain
frequencies from a signal.

The variables used as parameters in a procedure or
function definition.

One of the hi-res screen display modes in which each
pixel can take on one of four colours. The pixels in
this mode are twice as wide as in two-colour mode.

Cycles per second.

See "bit map mode"

A symbolic name associated with a program statement.

In a procedure or function, a variable which is created
inside the procedure and destroyed upon exit.

lores mode See "text mode".

78

MACHINE LIGHTNING

multi-colour mode

multi-tasking

OR

pixel

procedure

recursion

release

S2C0L mode

S4COL mode

SID

sprite variables

A games-writing utility in which the graphics camiands
available in BASIC LIGHTNING are controlled by a
assembly language program.

See "four-colour mode".

A mode in which the computer runs several programs
at once.

In terms of pixel data, a logical operation
indicating that the destination pixel is set if either
the source or destination pixels are already set.

An individual 'point' on the screen which can only
be accessed individually in bit-map mode.

A piece of code which can be called with parameters.

See recursion.

The rate at which a musical note falls from sustain
volume to no volume.

A mode, enabled by the S2C0L command, in which BASIC
LIGHTNING'S graphics commands operate on pixel data
to be displayed in two-colour mode.

A mode, enabled by the S4C0L command, in which BASIC
LIGHTNING'S graphics commands operate on pixel data
to be displayed in four-colour mode.

Sound Interface Device.

A set of 13 pseudo-varibles which can be used to pass
parameters to some of the graphics ccmmands.

structured programmming The coding of algorithms without the use of
unconditional jumps.

sustain

syntax

text mode

two-colour mode.

variable parameter

WHITE LIGHTNING

XOR

The volume level for the sustain of a musical note.

Programming language sentance structure.

A mode in which only characters can be displayed on
the screen and individual pixels cannot be accessed.

One of the hi-res screen display modes in which each
pixel can take on one of two colours.

A parameter of a procedure which is altered by the
procedure.

A games-writing utility in which the graphics commands
available in BASIC LIGHTNING are available from
FORTH.

In terms of pixel data, a logical operation
indicating that the destination pixel is set if one
but not both of the source and destination
pixels are already set.

79

80

Codes frcm 128-255 are reversed images of codes 0-127.

Note: graphics charac te rs a re not shown in the above t a b l e .

APPENDIX E-SCREEN DISPLAY CODES

UPPER

8
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
H
X
Y
Z

SPACE
i

n

$
%
&
i

(
)
*
+

@
a
b
c
d
e
f
g
h
i

J
k
l
m
n
o
P
q
r
s
t
u
V

w
X

y
z

SPACE
i

"
it
$
%
i

)
(
*
+

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

UPPER

r
—

/
0
1
2
3
4
5
6
7
8
9

<
=
>
p

1

~

}
0
1
2
3
4
5
6
7
8
9

<
=
>
•?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
C
R
S
T
U

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

V

w
X
Y
Z

SPACE SPACE

/-WM?

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

APPENDIX F-ASCII AND CHRS CODES

Note: graphics charac te r s a r e not shown in the t a b l e above.

8 1

PRINTS C

WHITE

RETURN

DOWN
RVS ON

HR$

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

HOME CSR 19
DELETE

RED
RIGHT
GREEN
BLUE
SPACE

i

"

$
%
&
.
(
)
*
+

t

-
.
/
0

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

PRINT$

1
2
3
4
5
6
7
8
9

:
;
<
ss

>
7

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P

Q
R
S
T
U
V

w
X
Y

z

CHR$

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97 CODES

CODES
CODE

192-223
224-254
255

SAME AS
SAME AS
SAME AS

96-127
160-190
126

PRINTS i

ORANGE

fl

f3
f5
f7
f2
f4
£6
f8

ZHR$

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

SHFT-RTN141

BLACK

142
143
144

PRINTS

UP
RVS OFF
CLS
INST
BROWN
L.RED
GREY1
GREY2
L.GRN
L.BLUE
GREY3
PURPLE
LEFT
YELLOW
CYAN
SPACE

CHR$

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

APPENDIX G-BASIC LIGHTiMING MEMORY MAP

$0000
$0100
$0200
$0400
$0500
$0600
$0700
$0800
$5800
$A000
$A000
$C000
$C800
$OC00
$DO0O
$D800
$DC00
$E000
$E00O

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

$00FF
$01FF
$03FF
$04FF
$05FF
$06FF
$07FF
$57FF
$9FFF
$BFFF
$BFFF
$C7FF
$CBFF
$CFFF
$D7FF
$DBFF
$DFFF
$FFFF
$FFFF

zero page
stack
system variables
storage for pseudo-variables
wrap buffer no. 1
wrap buffer no. 2
sprite pointers - low bytes
BASIC LIGHTNING extension

*BASIC LIGHTNING program text
*sprite storage
BASIC ROM
character set and/or hardware sprites
text screen
hi-res primary attributes
I/O devices
text colour memory/hi-res secondary attributes
I/O devices
hi-res pixel data
KERNAL ROM

* These can be a l t e r e d using the RESERVE command.

APPENDIX H-ERROR MESSAGES

BAD UNTIL

BAD WEND

BAD EXIT

BAD LOCAL

BAD PROCEND

NO ROOM

CORRUPTED SPRITE

REDEF'D SPRITE

NO SUCH SPRITE

DELETE SPRITE ZERO

OUT OP RANGE

: An UNTIL command was found without a corresponding REPEAT.

: A WEND command was found without a corresponding WHILE.

: An EXIT canmand was found which is not inside a loop.

: A LOCAL canmand was found which is not at the top of a
procedure or function definition.

: A PROCEND was found when a procedure has not been called.

: There is insufficient sprite space left.

: The sprite data in the table has been corrupted.

: An attempt has been made to define a sprite which already
exists.

: An attempt was made to reference a sprite which does not
exist.

: Sprite zero is the hi-res screen and therefore it cannot
be deleted.

: An attempt was made to reference pixel data off the edge
of a sprite.

82

SPRITE NO.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

DESCRIPTION

PACMAN GHOST
MAN
LIGHT TANK
BI-PLANE
HELICOPTER #1
SPACESHIP #1
SPACE TANK
ASTROID SPACESHIP #1
ASTROID SPACESHIP #2
INVADER #1
INVADER #2
SPACESHIP #2
SPACESHIP #3
BUG EYED MONSTER #1
WOMAN
SPACESHIP #4
HEAVY TANK
INVADER #3
SPITFIRE
FLYING SAUCER #1
FACE
SPACESHIP #5
SPACESHIP #6
SPACESHIP #7
METEOR
FLYING SAUCER #2
BUG EYED MONSTER
BUG EYED MONSTER
SPACESHIP #8
SPACESHIP #9
INVADER #4
OCEAN LINER
TRI-PLANE
BUILDING
BULL DOZER
SPACESHIP #10
DUCK
MEDIUM TANK
HELICOPTER #2
HOVERCRAFT
SUBMARINE
TANK DESTROYER
SPACESHIP #11
RABBIT
FROG
CROCODILE
CRAB
SPACESHIP #12
SPACESHIP #13
SPACESHIP #14

INK 3

7
1
5
2
5
2
6
1
3
1
7
0
0
3
7
5
15
5
0
1
1
0
3
1
5
0
6
11
0
0
3
6
2

0
3
7
0
6
2
11
11
11
1
5
11
5
6
3
5

INK 4

0
0
0
15
0
15
15
0
0
0
0
15
15
0
0
1
0
0
3
0
4
3
0
0
0
5
3
7
1
1
0
3
3

3
2
0
3
3
1
3
7
3
4
0
3
1
1
0
0

HGT

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
2
2
3
2
2
2
2
2
2
2
4
2
2
2
2
2
3
2
0
3
3
2
3
2
3
3
3
3
3
3
2
2
2

WID

2
2
4
4
4
4
4
2
2
2
2
4
4
2
2
5
6
2
5
5
2
5
5
6
5
4
4
3
5
6
2
7
4
3
5
5
4
6
7
5
8
6
5
2
3
6
5
6
6
6

APPENDIX I -THE ARCADE SPRITE LIBRARY

THE ARCADE SPRITES SAVED AS DEMOl

SPRITES 100 TO 109 USED AS A DEMONSTRATION OF ANIMATION.

8 3

APPENDIX J-CASSETTE STORAGE

TAPIS 1

SIDE A

1. BASIC LIGHTNING
2. SPRITE GENERATOR

SIDE B

1. BASIC LIGHTNING
2. SPRITE GENERATOR

TAPE 2

SIDE A

1. ARCADE SPRITES
2. DEMO SPRITES

SIDE B

1. BASIC DEMO
2. DEMO SPRITES

"BL"
"SPTGEN"

"BL"
"SPTGEN"

"DEMOl"
"DEM02"

"DEMO"
"DEM02"

(TURBO LOADING)
(TURBO LOADING)

APPENDIX K-RUNNING THE DEMO

1 . Load BASIC LIGHTNING from Tape 1 u s i n g SHIFT-RUN/STOP.
2 . Load BASIC DEMO S i d e B u s i n g SHIFT-RUN/STOP.
3. To re-run j u s t type RUN.

84

APPENDIX L

INTERRUPT-DRIVEN COMMANDS: PLAY, RPLAY, TRACK AND MOVE

These four commands allow you to play tunes or move hardware sprites under
interrupt, the necessary data being taken frcm a software sprite.

PLAY AND RPLAY

These are used to play tunes under interrupt and both have three parameters-
SPN,COL and RCW. Unlike normal usage, COL and ROW are both sprite numbers.
Sprite SPN is the software sprite with the data for voice 1, sprite COL contains
voice 2's data, and sprite ROW contains voice 3's data.

For exanple, if you wanted the data in sprite 3 to be played by voice 1, sprite 9
by voice 2 and sprite 15 by voice 3, you would use:

PLAY 3,9,15

It is also possible to keep a voice silent (so that it could be used to generate
sound effects with the MUSIC command) by specifying sprite zero:

PLAY 3,0,15 would keep voice 2 silent.

Using this method it is possible to silence all voices:

PLAY 0,0,0

If you use the PLAY command, the voices will remain silent after the last byte of
data has been read frcm the sprite. If however you use RPLAY instead of PLAY,
then the tune is repeated indefinately, or until a PLAY 0,0,0 is executed.

FORMAT FOR STORING TUNES IN SPRITES:

Each note inside the sprite takes up four bytes - two bytes for frequency in the
usual low byte-high byte order followed by the length of the note in 60ths of a
second, and the time (again in 60ths of a second) taken between releasing the
present note and striking the next one.

The data is contained in the pixel data part of the sprite only - the attribute
part is not used. Since each character block uses up 8 bytes, 2 notes will fit
into one character block. Thus, if the tune contained 30 notes, a 15x1 sprite
could be used to store the data.

There are two ways of getting the data into the sprite - it could either be put
there using the 'N' option in the sprite generator program or it can be POKEd in
directly frcm data statements:

250 SPRITE 1,15,1
260 FOR i=DFA(l) TO AFA(1)-1 STEP 4
270 READ j
280 DOKE i,j
290 READ j
300 POKE i+2,j
310 READ j
320 POKE i+3,j
330 NEXT i

85

In t h i s case , the data should be arranged in groups of t h r e e - frequency, length
and gap between no tes :

400 DATA 6407,20,10
410 DATA 12814,40,20
430 DATA 6407,20,10
440
450

For a t ab le of frequency va lues , see appendix M.

Before using PLAY or RPLAY, the wave form, volume and envelope must be se t up as
for the MUSIC command.

TRACK

TRACK is similar to PLAY in that it reads data from a software sprite under
interrupt - however, in this case the data is used to move a hardware sprite
around the screen. The data is held in groups of two bytes inside the sprite; one
byte x-offset followed by the byte y-offset. These offsets are signed (-128 to
127) and are added to the sprites x and y positions on the screen every 50th of a
second.

Note: If you want to enter negative numbers into the sprite using the 'N1 command
if its sprite generator then add 256 to your negative number ie:

Instead of entering -1 enter 256 + - 1 = 255
Instead of entering -8 enter 256 + - 8 = 248
Instead of entering -120 enter 256 + - 120 = 136
Instead of entering -128 enter 256 + - 128 = 128

TRACK SPN,SPN2

Track has two parameters, SPN is the software sprite containing the data and SPN2
is the hardware sprite to be moved (0 to 7). As with PLAY, the data can be put in
the software sprite using the sprite generator, or it can be POKEd in directly:

250 SPRITE 1,15,1
260 FOR i = DPA(l) TO AFA(1)-1
270 READ j
280 POKE i,j -(j<0)*256
290 NEXT i

400 DATA 1,0
410 DATA 1,-1

Note that line 280 allows negative numbers to be POKEd into memory. Since each
character block contains data for 4 interrupts, and interrupts occur 50 tines a
second, the above 15x1 sprite would contain enough data for 1.2 second of
animation.

TRACK deals with offsets which are added to the current position on the screen, so
it can be used to carry out an animation from any starting position. Before using
TRACK, the sprite must be turned on and positioned in the normal way.

86

MOVE SPN,COL,ROW is similar to TRACK - however, it only allows movement by a
constant amount, and data is not read from a sprite. SPN is the hardware sprite,
COL is the x-offset and ROW is the y-offset.

If a hardware sprite moves off the screen, it is automatically halted and turned
off. If you remove a sprite from the screen using .OFF any animation that was
taking place will stop.

It is also possible to use .XPOS(n) and .YPOS(n) in expressions to read a sprites
position:

IF .HIT(3) THEN PROCexplode(.XP0SC3),.YP0S(3))

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values to be
POKEd into the HI FREQ and LOW FREQ registers of the sound chip to produce the
indicated note.

MUSIC NOTE VALUES

Note

0
1
2
3
4
5
6
7
8
9
10
11
16
17
18
19
20
21
22
23
24
25
26
27
32
33
34
35
36
37
38
39
40
41

Octave

C-0
c#-o
D-0
D#-0
E-0
F-0
F#-0
G-0
G#-0
A-0
A#-0
B-0
C-l
C#-l

D-l
D#-l
E-l
F-l
F#-l
G-l
G#-l
A-l
A#-l
B-l
C-2
C#-2
D-2
D#-2
E-2
F-2
F#-2
G-2
G#-2
A-2

OSCILLATOR FREQ

Decimal

268
284
301
318
337
358
379
401
425
451
477
506
536
568
602
637
675
716
758
803
851
902
955
1012
1072
1136
1204
1275
1351
1432
1517
1607
1703
1804

Hi

1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
3
4
4
4
4
5
5
5
6
6
7

Low

12
28
45
62
81
102
123
145
169
195
221
250
24
56
90
125
163
204
246
35
83
134
187
244
48
112
180
251
71
152
237
71
167
12

87

MUSICAL

Note

42
43
48
49
50
51
52
53
54
55
56
57
58
59
64
65
66
67
68
69
70
71
72
73
74
75
80
81
82
83
84
85
86
87
88
89
90
91
96
97
98
99
100
101
102
103
104
105
106
107
112
113
114
115
116
117
118

NOTE

Octave

A#-2
B-2
C-3
C#-3
D-3
D#-3
E-3
F-3
F#-3
G-3
G#-3
A-3
A#-3
B-3
C-4
C#-4
D-4
D#-4
E-4
F-4
F#-4
G-4
G#-4
A-4
A#-4
B-4
C-5
C#-5
D-5
D#-5
E-5
F-5
F#-5
G-5
G#-5
A-5
A#-5
B-5
C-6
C#-6
D-6
D#-6
E-6
F-6
F#-6
G-6
G#-6
A-6
A#-6
B-6
C-7
C#-7
D-7
D#-7
E-7
F-7
F#-7

OSCILLATOR FREQ

Decimal

1911
2025
2145
2273
2408
2551
2703
2864
3034
3215
3406
3608
3823
4050
4291
4547
4817
5103
5407
5728
6069
6430
6812
7217
7647
8101
8583
9094
9634

10207
10814
11457
12139
12860
13625
14435
15294
16203
17167
18188
19269
20415
21629
22915
24278
25721
27251
28871
30588
32407
34334
36376
38539
40830
43258
45830
48556

Hi

7
7
8
8
9
9
10
11
11
12
13
14
14
15
16
17
18
19
21
22
23
25
26
28
29
31
33
35
37
39
42
44
47
50
53
56
59
63
67
71
75
79
84
89
94
100
106
112
119
126
134
142
150
159
168
179
189

Lew

119
233
97
225
104
247
143
48
218
143
78
24
239
210
195
195
209
239
31
96
181
30
156
49
223
165
135
134
162
223
62
193
107
60
57
99
190
75
15
12
69
191
125
131
214
121
115
199
124
151
30
24
139
126
250
6

172

88

MUSIC

Note

119
120
121
122
123

AL NOTE

Octave

G-7
G#-7
A-7
A#-7
B-7

OS

Decimal

51443
54502
57743
61176
64814

CILL !VIOR I

Hi

200
212
225
238
253

TREQ

Low

243
230
143
248
46

LOCATION

54293

54294

54295

54296

CONTENTS

Low Cutoff frequency (0-7)

High Cutoff frequency (0-255)

Resonance (bits 4-7)
Filter voice 3 (bit 2)
Filter voice 2 (bit 1)
Filter voice 1 (bit 0)

High pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0-3)

8M

