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BETA 
KickC is currently in beta, and crashes quite often resulting in cryptic errors. Also it will 
sometimes create ASM code that does not work properly. Feel free to test it and report any 
problems or errors you encounter, but do not expect it to produce production quality code. Also, 
be prepared that major breaking changes (to syntax, to semantics, etc.) may be implemented in 
the next versions.  
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1 What is KickC? 
KickC is a compiler for a C-family language creating optimized and readable 6502 assembler 
code. 

The KickC Language 
 
The KickC language is classic C with some limitations, some modifications and some 
extensions to ensure an optimal fit for creating 6502 assembler code.  
 
The language has the familiar C syntax and supports many of the basic features of C, so it 
should be quite easy to get started with if you have programmed in C or any similar language. 
Here is a simple “hello world” program, that prints “hello world!” at the top of the screen.  
 
import “print” 

void main() { 

print_str(“hello world!”); 

} 

 
The language has a number limitations compared to standard C, for example no support for 
structs, enums, unions or reentrant functions. Some features were omitted because they cannot 
be realized in a way that creates optimized 6502 assembler code. Others were omitted simply 
because they have not yet been implemented in the current version. 
 
The language also have some modifications and extensions to standard C. The modifications 
and extensions were included either to allow creation of better 6502 assembler code or for 
convenience.  
 
All limitations, modifications and extensions are described in the following sections. 

Optimized and Readable 6502 Assembler Code 
The KickC Compiler produces assembler code for the MOS Technology 6502 processor. The 
assembler code is produced as source code that can be assembled to binary by the Kick Assembler 
(http://theweb.dk/KickAssembler).  
 
The compiler uses a number of modern optimization methods to create 6502 assembler code that 
executes as fast as possible and does not contain unnecessary boilerplate. The optimization 
techniques include  

● Detection of constant values and expressions 
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● Optimized allocation of registers to variables 
● Optimized parameter and return value passing to/from functions 
● Minimizing the number of zero-page addresses used for storing variables 
● Choosing optimal assembler instructions to represent each statement 
● Removing unused functions, variables and code 
● Peephole optimization of the generated assembler code  

 
The optimization techniques are also explained in more detail in later sections. 
 
Below a slightly more complex version of hello world, which prints “hello world!” with an added space 
between each letter on the first and third line of the C64 default screen at $400. This example 
illustrates how the KickC compiler creates optimized readable 6502 assembler. 

helloworld2.kc 
byte* screen = $400; 

 

void main() { 

    byte* hello = "hello world!"; 

    print2(screen, hello); 

    print2(screen+2*40, hello); 

} 

 

void print2(byte* at, byte* msg) { 

    byte j=0; 

    for(byte i=0; msg[i]!='@'; i++) { 

        at[j] = msg[i]; 

        j += 2; 

    } 

} 

 

 

 

 

helloworld2.asm 
.label screen = $400 
main: { 
    lda #<screen 
    sta print2.at 
    lda #>screen 
    sta print2.at+1 
    jsr print2 
    lda #<screen+2*$28 
    sta print2.at 
    lda #>screen+2*$28 
    sta print2.at+1 
    jsr print2 
    rts 
    hello: .text "hello world!@" 
} 
print2: { 
    .label at = 2 
    ldy #0 
    ldx #0 
  b1: 
    lda main.hello,x 
    sta (at),y 
    iny 
    iny 
    inx 
    lda main.hello,x 
    cmp #'@' 
    bne b1 
    rts 
} 

 
The KickC compiler uses the following insights to optimize the helloworld2 program: 

- The screen pointer is never modified and is therefore a constant location in memory. 
- The second parameter to the print2-function (msg) always has the same value 

main.hello, so that can be hardcoded inside the method body instead of parsing it.  
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- The contents of msg[i] (ie. the hardcoded main.hello string) can be addressed using 
simple indexing. 

- The at-parameter in print2 is truly variable, so it is placed on zero-page ($2 and $3) and 
indirect indexing can be used for addressing the contents of at[j]. 

- The X-register is optimal for the i variable in the print2 function as it is good at indexing 
and incrementing. 

- The Y-register is optimal for the j variable in the print2 function as it is good at indirect 
indexing and incrementing. 

- When 2 is added to the j-variable it is better to do INY twice than to use addition. 
- The A-register is optimal for holding the current character c of the message being moved 

to the screen as LDA and STA can be efficiently indexed by X and indirect indexed by Y. 
 
When generating Kick Assembler code the KickC compiler tries to ensure that the assembler code is 
readable and corresponds to the source C program as much as possible. This includes using the 
same names, using scopes and recreating constant calculations in assembler, when possible. 
 
The KickC Compiler creates readable 6502 assembler code for the helloworld2 program by: 

- Using the variable and function-names screen, hello, main, print2, at  in the generated 
code 

- Recreating the calculation of the constant screen+2*40 in the assembler code as 
screen+2*$28 

- Creating a local named scope in the assembler-code for the methods main and print2 by 
enclosing them in curly braces. 

- Placing method-local data and labels inside the method scope.This allows other 
assembler code to access the local data/labels using dot-syntax eg. main.hello or 
print2.at  

Getting Started 
The KickC development is hosted on gitlab https://gitlab.com/camelot/kickc. Here it is possible 
to follow the development and to download the latest binary release. 
 
You install KickC on your own computer by: 

1. Download the newest KickC release zip-file from https://gitlab.com/camelot/kickc/tags 
2. Unpack the zip-file to a folder of your own choice.  

 
The zip-file contains the following  

○ lib Folder containing the KickC JAR-file plus a few other JARs needed for running 
KickC (antlr4-runtime, picocli and KickAssembler). 

○ bin Folder containing bat/sh-files for running KickC. 
○ stdlib Folder containing KickC-files with useful library functions usable in your 

own program. 
○ examples Folder containing some example KickC programs. 
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○ This manual in PDF-format and some files with license-information. 
 
KickC is written in Java. To use  KickC you need to download and install a Java runtime from 
https://www.java.com. Java must be added to your PATH, or the environment variable 
JAVA_HOME must point to the folder containing the Java installation.  
 
NOTE: KickC runs a lot faster on 64bit Java than on 32bit Java. You are therefore encouraged 
to ensure that your Java is a 64bit version. You can check by executing  java -version in a 
Terminal/Command Prompt. 
 
After installing KickC and you can compile a simple sample KickC program by doing the 
following:  
 
MacOS 

1. Start a Terminal 
2. cd to the folder containing KickC  
3. Enter the command  

bin/kickc.sh examples/helloworld/helloworld.kc 

 

Windows 
1. Start a Command Prompt 
2. cd to the folder containing KickC  
3. Enter the command  

bin\kickc.bat examples\helloworld\helloworld.kc 

 

This compiles the helloworld KickC program examples/helloworld/helloworld.kc and 
produces assembler code in  examples/helloworld/helloworld.asm.  The resulting ASM-file 
can then be assembled using KickAssembler, producing a runnable program, that can be 
executed using an emulator or transfered to the real 8-bit hardware. 
 
To make the workflow convenient KickC has a command line option (-a) to compile the resulting 
ASM code with KickAssembler. This is one of the reasons that the KickAssembler JAR is 
bundled with the release of KickC. 
 
For even more convenience KickC also has a command line option (-e) that both assembles the 
ASM code and executes the resulting binary program in the VICE Commodore 64 emulator 
(http://vice-emu.sourceforge.net/). The option requires VICE x64 to be available in the PATH.  
 
To compile, assemble and execute the example program simple-multiplexer.kc (a sprite 
multiplexer moving 32 balloons in a sinus on the screen) use the following command in the 
kickc-folder (assuming MacOs) 
 
bin/kickc.sh -e examples/multiplexer/simple-multiplexer.kc   
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To create your own KickC-programs use any text-editor to create a source file containing a void 
main() function, save it to the file system (using the .kc extension is recommended) and 
compile it by passing it to kickc.sh (on MacOs) or kickc.bat (on Windows). 

2 KickC Language Reference 
KickC is a C-family language, and much of the syntax and semantics is the same as C99. In the 
following the different parts of the language is explained. Finally the differences between KickC 
and standard C are listed.  

Variables 
Variables are declared like in regular C by type name and can include an optional initialization 
assignment. The following declares a signed char variable with the name size and the initial 
value 12. 
 
char size = 12; 

 
If variables do not have an initial assignment they will be initialized with the default value zero. 
 
It is possible to  declare multiple variables with the same type by separating the names and 
optional initializations with commas. Here two unsigned int variables a and b are declared, a 
is initialized to 4 while b is initialized to the default value (zero). 
 
unsigned int a = 4, b; 

 
In KickC variables can be declared at any point in the program, outside functions or inside 
function declarations.  

Data Types 

Integers 
KickC supports the standard C integer data types (char, short, int, long), but also adds some 
fixed size integer types, that have names more familiar on the 6502 platform (byte, word, 
dword). 
 

Type Name Description 

byte 
unsigned byte 

An unsigned 8 bit (1 byte) integer. 
Range is [0;255]. 
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unsigned char 

signed byte 
char 
signed char 

A signed 8 bit (1 byte) integer in two’s complement.  
Range is [-128;127]. 

word 
unsigned word 
unsigned short 
unsigned int 

An unsigned 16 bit (2 byte) integer  
Range is [0;65,535]. 

signed word 
short 
signed short 
int 
signed int 

A signed 16 bit (2 byte) integer in two’s complement. 
Range is [−32,767; +32,767]. 

dword 
unsigned dword 
unsigned long 

An unsigned 32 bit (4 byte) integer. 
Range is [0, 4,294,967,295]. 

signed dword 
long 
signed long 

A signed 32 bit (4 byte) integer in two’s complement. 
Range is [−2,147,483,647, 2,147,483,647]. 

 
If the standard C integer types are declared without a unsigned/signed prefix they default to 
signed. If the special 6502-friendly integer types are declared without a unsigned/signed prefix 
they default to unsigned.. 
 
Integer literals can be either decimal, hexadecimal or binary. The syntax for hexadecimal integer 
literals support both C syntax (prefixing with 0x) and 6502 assembler syntax (prefixing with $). 
Similarly the syntax for binary supports both prefixing with 0b and %.  
 

Prefix Format Examples 

 Decimal 12 
53280 

0x 
$ 

Hexadecimal 0x40 
$dc01 

0b 
% 

Binary 0b101 
%1100110011001100 

 
Character literals are unsigned bytes / chars. The syntax for a character literal is the character 
enclosed in single quotes. Numerically the character is represented by the C64 screen code. 
The following initializes the variable c to the character ‘c’. 
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byte c = 'c';  

Booleans 
KickC also has a boolean type called bool. The boolean literals are true and false.Underlying 
the boolean type is a byte containing either 0 (if  false) or 1 (if true). The following is an example 
of a boolean variable called enabled. 
 
bool enabled = true; 

Pointers 
Pointers to all integer types and booleans are supported and declared using the syntax type*. 
The following is an example, where screen is a pointer to a byte and pos is a pointer to a signed 
integer. 
 
byte* screen;  

int* pos; 

 

Pointers to pointers are also supported. Here an example of a pointer to a pointer to an 
unsigned char. 
 
unsigned char** screenptr = &screen;  

 
For functions it is only possible to use pointers to functions that has no return value and take no 
parameters. 

Arrays  
Arrays of integer and boolean types are supported using the syntax type[] or type[size]. For 
all practical purposes array variables are treated exactly like pointers.  
Arrays can be initialized by an array literal written as comma-separated values inside curly 
braces eg. { 1, 2, 3 }. They can also be initialized with all zero values just by declaring the 
array to have a specific size. 
 
String literals can also be used to initialize an array of unsigned bytes. The syntax for a string 
literal is the string enclosed in double quotes. Stings are per default zero terminated. It is 
possible to create a string that is not zero terminated by adding the special suffix z after the last 
double quote.  
 
Arrays that are initialized will allocate the memory needed for the size. 
 
In the following example, sums is array of 3 signed bytes initialized with zeros, fibs is an array of 
6 signed integers containing the first fibonacci numbers. msg is an unsigned byte array 
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containing the numeric value of the 6 characters ‘h’, ‘e’, ‘l’, ‘l’ and ‘o’ plus a seventh value that is 
zero (because strings are zero terminated) while msg2 only has the 6 characters without the 
final zero. Finally bs is simply a pointer to a boolean. 
 
signed byte[3] sums; 

int[] fibs = { 1, 1, 2, 3, 5, 8 }; 

byte[] msg = "hello"; 

byte[] msg2 = "hello"z; 

bool[] bs; 

 
Arrays of arrays are not supported. 

Constants 
Constants can be declared by using the const keyword.  
 
const byte SIZE = 42; 

 
The compiler is quite good at detecting constants automatically, so it is not strictly necessary to 
declare any constants. However declaring a constant can help make the code more readable 
and will generate an error if any code tries to modify the value.  
 
When an array is declared constant only the pointer to the array is constant. The contents of the 
array can still be modified. 

No Floating Point Types 
KickC has no floating point types, as the 6502 processor has no instructions for handling these.  

Expressions 
Expressions in KickC consist of operands and operators. Operands are either data type literals 
or names of variables or constants. All well known expression operators from C and similar 
languages also exist in KickC. An example of an expression is (bits & $80) != 0 

Arithmetic Operators 
The arithmetic operators support performing simple numeric calculations 

● a + b Addition 
● a - b Subtraction 
● - a Negation 
● + a Positive 
● a * b Multiplication 
● a / b Division 
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● a % b Modulo 
 
Multiplication, division and remainder are allowed, however there is very limited run-time support 
for these operators as the 6502 has no instructions supporting them. Only multiplying and 
dividing by powers of 2 (eg 2, 4, 8, 16, ...) is supported at runtime since this is supported by bit 
shifting instructions. Multiplication and division can also be used for calculating values that end 
up being constant. If they are used in a way that requires runtime support beyond bit shifting the 
compiler will fail with an error. 
 
For convenience plus (addition) can also be used for concatenating strings initializers with other 
strings or characters. The following initializes the variable msg with the text “hello world”. 
 
byte[] msg = "hello" + ' ' + "world"; 

Bitwise Operators 
The bitwise operators operate on the individual bits of the numeric operands. 

● a & b Bitwise and 
● a | b Bitwise or 
● a ^ b Bitwise exclusive or 
● ~ a Bitwise not 
● a << n Bitwise shift left n bits 
● a >> n Bitwise shift right n bits 

Relational Operators 
The relational operators compare values and has a boolean value result.  

● a == b Equal to  
● a != b Not equal to 
● a < b Less than 
● a <= b Less than or equal to 
● a > b Greater than 
● a >= b Greater than or equal to 

Logical Operators 
The logical operators operate on boolean operands and has a boolean result.  

● a && b Logical and 
● a || b Logical or 
● ! a Logical not 

 
When && and || are used in if, while, do-while or similar statements they are short 
circuit-evaluated meaning that if a evaluates to true in if(a || b) { … } then b is never 
evaluated. Similarly if a evaluates to false in if(a && b) { … } then b is never evaluated.  
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Conditional Operator 
The conditional operator is also called ternary operator because it is the only operator using 
three operands. It is  used to choose between two different values. 
 

● a ? b : c Conditional 
 
It evaluates the first operand, which should be boolean. If the first operand evaluates to true it 
returns the value of the second operator. If the first operand evaluates to true it returns the value 
of the third operator. It uses short-circuit-evaluation meaning that only one of the two last 
operands are evaluated depending on the value of the first operand.  
 
In this example d will be set to the value of c if c is positive and to -c if c is negative. 
 
char d = c>0 ? c : -c;  

Comma Operator 
The comma operator can be used to evaluate multiple values in place of an expression. It 
evaluates the first operand and discards the results. Then it evaluates the second operand and 
returns the results. 
 

● a , b Comma 

 
Using it can produce code that is hard to read, however it can come to good use in 
for()-statements to increment multiple variables. Here an example of a for()-loop with two 
loop-variables i and j.  
 
for(unsigned char i=0, j=0; i<32; i++, j+=2) { … } 

Assignment Operators 
Assigning a value to a variable is also an expression operator that returns the value assigned. 
This means that assignments can be nested inside expressions, and that they can be chained if 
multiple variables should be assigned the same value like a = b = 0. An assignment of course 
has side effects, as it modifies the assigned variable.  
 
Compound assignment operators, such as a += b is a convenient shorthand for updating the 
value of a variable. It works exactly like a = a + b.  
 

● a = b Assignment 
● a += b Addition assignment 
● a -= b Subtract assignment 
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● a *= b Multiply assignment 
● a /= b Divide assignment 
● a %= b Modulo assignment 
● a <<=b Left shift assignment 
● a >>=b Right shift assignment 
● a &= b Bitwise and assignment 
● a |= b Bitwise or assignment 
● a ^= b Bitwise exclusive or assignment 

Increment/decrement Operators 
The pre-increment/decrement and post-increment/decrement operators is a convenient way of 
incrementing/decrementing the value of a numeric variable just before or just after the value is 
used in an expression. 
 

● ++a Pre-increment 
● --a Pre-decrement 
● a++ Post-increment 
● a-- Post-decrement 

Pre-incrementing works just like incrementing the value of c before the statement, meaning that 
a = b + ++c; is the same as c += 1; a = b + c; Similarly post-incrementing works just like 
incrementing the value after the statement, meaning that a = b + c--; is the same as a = b + 
c; c -= 1; 

Pointer and Array Operators  
The two basic pointer operators are the &a address-of operator, which creates a pointer to  a 
variable and the *a pointer dereference operator, which supports reading and writing the value 
pointed to by the pointer. 
 
The array indexing operator a[b], which supports reading and writing of array elements, is in fact 
also a pointer operator. Because an array variable is actually a pointer to the start of the array 
the array dereference operator a[b], which is actually shorthand for *(a+b). 
 

● &a Address of  
● *a Pointer dereference 
● a[b] Array indexing 

Low/High Operators 
An extension in KickC is the inclusion of operators that allow addressing the low/high byte of a 
word, and the low/high words of a dword. These are well known from 6502 assemblers. 
 

14 



The low-operator <a addresses the low-byte of the word a, or the low-word if a is a dword. 
Similarly the high-operator >a addresses the high-byte of a word or high-word of a dword. 
 
The low/high operator can also be used on the left side of assignments to modify only the 
low/high byte of a word or low/high word of a dword. 
 

● <a Low part of 
● >a High part of 

 
The following example sets the low part of the word in a to 0. If a was $0428 before the 
assignment it will be $0400 afterwards. 
 
<a = 0;  

Function Calls 
Function that returns a value can be called as part of an expression. Functions are called by the 
normal parenthesis-syntax with parameter values separated by commas. Coding functions is 
described in the section Functions. 
 

● f(a,b) Function Call 

Automatic Type Conversion and Type Casting 
KickC handles automatic type conversions a differently than standard C. Where standard C 
converts all small integers to int before evaluating expressions KickC supports evaluating 
operators for all types and only performs conversions if they are strictly necessary. Limiting the 
number of automatic type conversions helps creating better optimized 6502 assembler. In a 
many cases KickC can even handle operators for two values of different type directly. For 
instance adding a byte to a word can be done in more optimal 6502 code than first converting 
the byte to a word and then adding the two words. In practice the difference to standard C rarely 
has any consequences. 
 
Like standard C, KickC will ensure automatic type conversion (if necessary) as long as the type 
of one value can contain all values of the type of the other. For instance an unsigned byte can 
be automatically converted to a signed word as signed words can hold all possible unsigned 
byte values. An unsigned byte can not be automatically converted to an signed byte, since a 
signed byte cannot hold all possible byte values. 
 
The automatic conversions that Kick can perform for each type are the following 
 

Type Can be automatically converted to 
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unsigned byte unsigned word, signed word, unsigned dword, signed dword  

signed byte signed word, signed dword  

unsigned word unsigned dword, signed dword 

signed word signed dword 

unsigned dword - 

signed dword - 

 
The cast operator can be used to perform explicit type conversion. Casting also allows 
conversions to a type that cannot hold all possible values, and where some information may be 
lost in the conversion, for example casting a signed byte to an unsigned byte. 
 

● (type)a Casting 
 
For sub-expressions containing only constants the KickC compiler tries to infer the type of the 
sub-expression. This is done by performing the calculation and then checking which types can 
hold the calculated value. For instance the calculation $4000/$80 is inferred to match any 
integer type except signed byte (since a signed byte cannot hold 128) .  This also differs from 
standard C, where all constant integer numbers are ints unless specified otherwise. 

Operator Precedence and Parenthesis 
Operators precedence decides which operators are applied first when multiple operators are 
combined in an expression. For instance multiplication is performed before addition in a*b+c. In 
KickC operators generally have the same precedence as in standard C.  
 
Precedence rules can be overridden by using explicit parentheses in expressions. For instance 
to perform addition before multiplication (a+b)*c. 
 

● ( a ) Parenthesis 
 
The following table shows KickC operator precedences. Operators at the top of the table binds 
most tightly. 
 

Precedence Operators Associativity 

1 a++   a--   f( )  a[b] Left-to-right 

2 ++a   --a   +a    ~a  
!a    (t)a  *a    &a 

Right-to-left 
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3 a*b   a/b   a%b Left-to-right 

4 a+b   a-b Left-to-right 

5 a<<b  a>>b Left-to-right 

6 <a    >a  Left-to-right 

7 a<b   a<=b  a>b   a>=b Left-to-right 

8 a==b  a!=b Left-to-right 

9 a&b Left-to-right 

10 a^b Left-to-right 

11 a|b Left-to-right 

12 a&&b Left-to-right 

13 a||b Left-to-right 

14 a?b:c Right-to-left 

15 a=b   a+=b  a-=b  a*=b 
a/=b  a%=b  a<<=b a>>=b 
a&=b  a^=b  a|=b 

Right-to-left 

16 a,b Left-to-right 

Statements 
The statements of a KickC program control the flow of execution. KickC supports most 
statements supported by standard C.  
 
Statements are separated by semicolons stmt; stmt; and can be grouped together in blocks 
using curly braces { stmt; stmt; }. 

Expressions and Assignments 
All expressions are valid statements.There are two typical ways of using expressions as 
statements. The first is an assignment, which is an expression, modifying the value of a 
variable. 
 
a += 2; 

 
The second is calling a function that has a side effect. 
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print(“hello”); 

If  
The body of an if-statement is only executed if the condition is true. The if-statement can have 
an else-body, that is executed if the condition is not true. 
 
The following if-statement prints “even” to the screen if a is even. 
 
if((a&1)==0) { print(“even”); }  

 

The following if-statement increases b if a is less than 10 and decreases b otherwise. 
 
if(a<10) { b++; } else { b--; }  

While 
The body of a while-loop is executed repeatedly as long as the condition is still true. The 
while-loop is executed by first evaluating the condition. If the condition is true the body is 
executed and the loop starts over. If the condition is not true execution continues after the loop. 
If the condition is not true the first time the loop is encountered then the body is never executed. 
 
The following while-loop prints i dots on the screen, while counting i down to zero. 
 
while(i!=0) { print(“.”); i--; } 

Do-While 
The do-while-loop is very similar to the while-loop. The body of a do-while-loop is executed 
repeatedly as long as the condition is true. In the do-while-loop the body is executed first and 
then the condition is evaluated. If the condition is true the loop starts over. If the condition is not 
true execution continues after the loop.The body of the loop is always executed at least once. 
 
The following do-while-loop keeps scanning the keyboard until the space key is pressed. 
 
do { 

  keyboard_event_scan();  

} while (keyboard_event_get()!=KEY_SPACE) 

For 
The for-loop is a convenient way of creating a loop, where a loop-variable is initialized, the body 
is executed, the loop-variable is incremented and finally the condition is evaluated to determine 
whether to repeat the loop again. 
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A for-loop has the following syntax 
 
for(init; condition; increment) { body } 
 

and is equivalent to the following KickC code 
 

init; 
do { 

  body; 
  increment; 
} while(condition) 
 
The body and increment is always executed at least once in a KickC for-loop. This differs from 
standard C, where the condition is evaluated before the body and increment, enabling for-loops 
where the body is never executed. The KickC behavior was chosen because it can create more 
efficient 6502 ASM code than the standard C behavior. 
 
KickC has an additional convenience syntax for creating simple for-loops that loop over an 
integer range. The following for-loop executes the body 128 times with i having values 
0,1,...,127 
 
for(byte i : 0..127) { body }   
 
And is equivalent to  
 
for(byte i=0; i!=127+1; i++) { body }  

 
This convenience syntax only accepts constants or expressions evaluating to constants as the 
ends of the integer interval. It can loop both backwards and forwards. 

Break and Continue 
The break statement terminates a loop, whereas continue statement forces the next iteration 
of a loop. These statements are very useful when creating complex loop logic. 
 

The following loop prints a string on the screen, skipping all spaces by using the continue 
statement. When it encounters ‘@’ in the string it stops printing using the break statement. 
 
byte* screen = $400; 

byte[] str = "hello brave new world!@"; 

for( byte i: 0..255) { 

if(str[i]=='@') break; 

if(str[i]==' ') continue; 

*screen++ = str[i]; 
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} 

Functions 
Functions are named pieces of code that can be reused by calling them and passing different 
parameters. 

Calling functions 
In the following code a function called max is called 3 times. The max-function takes 2 byte 
parameters and returns the maximal value of the two. After this code m will have the value 31 
and n will have the value 47. 
 
byte m = max(31, 9 ); 

byte n = max(m, max(47, 7));  

 

In general a function is called using the syntax: 
 
name(param1, param2, …) 

 
Where 

● name is the name if the function 
● param1 is the value of the first parameter 
● param2 is the value of the second parameter  

 
The number of parameters passed must exactly match the number of parameters the function 
expect. 
 
If the function returns a value then the function call can be used as part of any expression. An 
example of this can be seen in the nested call to max above. 

Creating functions 
Functions are created by adding function declarations to your program. The following is a 
declaration of the max-function used above. It expects two byte value parameters, finds the 
largest one and returns it. 
 
byte max(byte a, byte b) { 

  if(a>b) { 

    return a; 

  } else { 

    return b; 

  } 
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} 

 

In general a function declaration has the following syntax: 
 
return-type name(param-type1 param-name1, param-type1 param-name1, ...) { body } 
 

Where 
● return-type is the type of value that the function returns 
● name is the name if the function 
● param-type1 is the type of the first parameter 
● param-name1 is the name of the first parameter 
● param-type2 is the type of the second parameter 
● param-name2 is the name of the second parameter 
● body is the code performing the task of the function 

 
If a function does not return a value it must declare the return type as void.  
 
The parameter declaration inside the parenthesis describes how many parameters must be 
passed when calling the function, the types of the parameters to be passed and names the 
parameters have inside the functions body code. The max-function above takes 2 byte 
parameters, named a and b.  
 
The function body is the code executed when calling the function. In the body code the declared 
parameters can be used as variables and will have the values passed by the call. 
 
The special statement return is used to return a value to the caller. The return statement 
exits the function immediately.  
 
The following statement exits the function and returns the sum of values a and b. 
 
return a+b; 

The main() function 
All KickC programs must have exactly one function called main. The main function is the 
starting point of the program. In KickC the main() function takes no parameters and returns no 
value. 
 
The following is a very simple KickC program with a main function that turns the screen 
background color black and exits. 
 
import "c64" 
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void main() { 

*BGCOL = BLACK; 

} 

 
When compiling the main-function generates a C64 BASIC program containing a single SYS 
command which starts the execution of the compiled KickC program. 
 
The following is the KickAssembler code resulting from compiling the KickC program above. 
BasicUpstart is KickAssemblers way of creating a BASIC-program with a single SYS command.  
 
.pc = $801 "Basic" 

:BasicUpstart(main) 

.pc = $80d "Program" 

  .label BGCOL = $d021 

  .const BLACK = 0 

main: { 

    lda #BLACK 

    sta BGCOL 

    rts 

} 

Comments 
Two types of comments are supported in KickC. Anything inside a comment has no effect on 
the generated code. 
 
Block comments, started with /* and ended with */ can span multiple lines. They can sometimes 
be useful for commenting out large parts of programs. 
 
/* A multi-line 

block comment */ 

 
Single line comments are started with double-slash // and ends at the next newline 
 
// a single-line comment 

Importing code from other files 
KickC differs from standard C in the way programs are split into multiple files. In KickC you do 
not need to split your code into header and code files. Instead you can simply use the import 
keyword to import another KickC source file. The compiler will do the work needed to keep track 
of which files import each other and ensure that the content of all imported files is compiled 
once.  
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The following imports the keyboard.kc file, that is part of the KickC standard library. The 
keyboard.kc file has functions for reading the C64 keyboard.  
 
import “keyboard” 

 
It is optional whether you include the KickC source extension .kc in your import statements. 
The compiler automatically adds .kc to any import if the import statement does not have the 
extension. 
 
When importing files the compiler first searches through the current folder where the file that 
has the import statement is located, then it searches each library folder added by the -libdir 
option to the compiler command.  
 
Imports can be told to look in subfolders by prefixing the filename with a slash-separated path. 
Here is an example where graphics code files are located in a subfolder: 
 
import “graphics/character” 

Variables Directives 
KickC has a number of directives can be used for controlling how a variable works. Variable 
directives are can be added before or after the type of the variable. 

Const 
The const directive is used to declare a constant. The declaration must also contain an 
assignment and the compiler will issue an error if the variable is assigned anywhere else.  
 
const byte SPRITES = 8; 

Register 
The register directive is used to instruct the compiler to use a specific CPU register for the 
variable. The compiler is quite good at optimizing register usage, so using this directive will 
often produce slower code than letting the compiler do the optimization itself. Using this 
directive can cause the compiler to fail if it is impossible to compile the program with the variable 
assigned to the register. 
 
byte register(X) i; 
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Align 
The align directive is used to control the placement of arrays and strings in memory. For 
instance align($40) will ensure that the memory address where the data is placed is a multiple 
of $40 bytes. This can be useful when trying to optimize the performance of your program.  
 
byte[$100] align($100) sine;  

Volatile 
The volatile directive tells the compiler that the value of the variable might change at any 
time. The volatile keyword must be used for variables that are shared between code running 
“simultaneously”. An example is when coding with interrupts (see the interrupt directive).  
The directive prevent the compiler from using all optimizations, where it assumes it can guess 
the value of the variable from the surrounding code. It will also ensure that the compiler does 
not produce code where the value of the variable is held in a register.  
 

volatile byte sprite_ypos; 

Function Directives 
KickC also has a few directives that instruct the compiler to treat functions in a specific way.  

Inline 
The inline function directive instructs the compiler to inline the whole function body 
everywhere the function is called. This can be used for optimizing your code since it allows the 
compiler to optimize the code of each function call independently, for instance by identifying 
constants in each call. It also saves the CPU cycles normally needed to call the function and 
return from it. The trade-off is that your program will compile into more bytes of code.  
 
inline byte sum( byte a, byte b) { 

    return a+b; 

} 

Interrupt 
The interrupt function directive is used for creating interrupt handler functions.  
 
interrupt(kernel_keyboard) void irq() { 

    *BGCOL = WHITE; 

    *BGCOL = BLACK; 

} 
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Setting up an interrupt on the C64 is done by assigning a pointer to an interrupt handler function 
to one of the interrupt vectors placed a specific addresses in the memory. Below is an example 
of setting up the kernal IRQ vector (at $314 in memory) to run the irq() function declared 
above. When setting up interrupts it is good practice to surround the code with the SEI/CLI 
instructions to prevent any interrupt from occuring during the setup itself.  
 
import "c64" 

 

void main() { 

    asm { sei } 

    *KERNEL_IRQ = &irq; 

    asm { cli } 

} 

 

Inside the parentheses of the interrupt directive the type of interrupt handler function is 
specified. This controls what kind of code is generated for saving/restoring register values and 
how the interrupt is exited: 

● kernel_keyboard Interrupt served by the kernal called through $0314-5. Will exit 
through the kernal using $ea31, which runs the normal kernal service routine that 
includes checking and handling keyboard input . 

● kernel_min Interrupt served by the kernal called through $0314-5. Will exit through the 
kernal using $ea81, which restores the registers and exits. 

● hardware_all Interrupt served directly from hardware through $fffe-f or $fffa-b. 
Will exit through RTI and will save/restore ALL registers 

● hardware_clobber Interrupt served directly from hardware through $fffe-f or 
$fffa-b. Will exit through RTI and will save necessary registers based on a clobber 
analysis of the interrupt handler code. 

● hardware_none Interrupt served directly from hardware through $fffe-f or $fffa-b. 
Will exit through RTI and will save/restore NO registers. 

 
If your interrupt code needs to utilize global variables to communicate with other parts of the 
program or to store state between interrupt calls these variables should be declared as 
volatile.  

Inline Assembler Code 
Programs can include inline assembler code inside a function body. This can for instance be 
useful for interfacing to machine code such as the BASIC/KERNAL or for modifying processor 
flags (such as the interrupt flag or decimal flag). 
 
Inline assembler is created using the asm statement with a body containing the assembler code. 
The following is an example setting the processor interrupt flag. 
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asm { 

  sei 

} 

 
The assembler language usable within the curly braces is pretty limited standard syntax 6502 
assembler using the same syntax as KickAssembler (and most classical 6502 assemblers). The 
following is supported: 

● All normal 6502/6510 instructions and addressing modes  
○ Immediate lda #%10101010 
○ Absolute eor 1024 
○ Zeropage rol 2 
○ Relative bne nxt 
○ Absolute indexed X adc $2000,x 
○ Absolute indexed Y cmp sintab,y 
○ Zeropage indexed X sbc 2,x 
○ Zeropage indexed Y stx $fe,y 
○ Zeropage indexed indirect X lda ($20,x) 
○ Zeropage indirect indexed Y ora (14),y 
○ Indirect jmp ($1000) 
○ Implied (no operand) tax 

● Labels 
○ Normal labels next: 
○ Multi labels next!: 

● Data  
○ Bytes .byte $10, $20 

 
The parameters for instructions and the data bytes can be written as expressions supporting 

● Literal numbers in decimal, binary or hexadecimal using the same syntax as KickC literal 
numbers eg. 1024, $3fff, %10101010 

● Literal characters eg. ‘q’ 
● Constant variables declared in the C-code eg. SCREEN  
● Labels declared within the assembler code 
● Math operators + - * /  < >  << >>  
● Parenthesis using [ and ] to avoid the assembler interpreting them as indirect 

addressing mode. 
 
The ability to reference constant variables declared outside the assembler code allows the inline 
assembler to interact with data in the C-part of the program. The following is an example 
referencing the constant variable SCREEN. 
 
const byte* SCREEN = $400; 
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void main() {  

asm { 

lda #’c’ 

sta SCREEN+40 

} 

} 

 

There is also support for referencing labels declared inside inline ASM in other functions using 
the special . operator (eg. clearscreen.fillchar ) . This makes it possible for ASM in one 
function to modify the code of ASM inside other scopes. 
 

The KickC compiler understands the inline assembler code and attempts to optimize it during 
the compilation process. For instance it can analyze which registers are clobbered by the inline 
assembler, and optimize surrounding KickC-code register usage.  
 
If your inline ASM contains a JSR call the compiler assumes that all registers are clobbered. 
However, it is possible to add a clobbers directive in parenthesis specifying exactly which 
registers are clobbered by your inline assembler code. Here is an example of inline assembler 
where the directive is used to specify that the JSR only clobbers the A- and X-registers. 
 
void playMusic() { 

asm(clobbers “AX”) { 

jsr $1000 

} 

}  

 
Since the compiler understands the inline assembler it will also modify the assembler code if this 
leads to faster execution, for instance removing an immediate load-instruction that loads a value 
that the register is already guaranteed to contain. 

Inline KickAssembler Code  
The inline assembler code described above can be very useful, but only supports very 
rudimentary assembler features. The limitations allow the compiler to understand the assembler 
code and include it in optimizations. 
 
If you need advanced assembler features in your code such as macros, loops or importing 
binary files or images it is possible to include inline KickAssembler code in your KickC program 
using the kickasm statement. The body of the kickasm statement must be enclosed in double 
curly braces and is passed directly to KickAssembler. The KickC compiler does not make any 
attempt to parse or understand the KickAssembler code. All advanced KickAssembler features 
are described in the manual here http://theweb.dk/KickAssembler. 
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The following is an example of inline KickAssembler code creating assembler for really fast 
screen clearing (1000 STA operations with no looping).  
 
void clearscreen() { 

kickasm(uses screen) {{ 

lda #0 

.for (var i = 0; i < 1000; i++) { 

sta screen+i 

} 

}} 

}  

 
Inline KickAssembler can reference constant variables declared in the surrounding C-code. To 
ensure that the KickC compiler knows that the inline KickAssembler uses a constant you should 
add a uses directive in parenthesis. This will ensure that KickC knows that the symbol is used, 
and for instance prevent the compiler from removing the symbol entirely if it is not used 
anywhere else.  
 
Inline KickAssembler is also allowed outside function bodies. Here it allows utilizing 
KickAssemblers powerful macro language to initialize data tables. To specify where the 
resulting data bytes ends up in memory the pc directive is specified in parenthesis. Here an 
example of generating a table with sinus values. 
 
const byte* sintab = $1000; 

kickasm(pc sintab) {{ 

.fill $100, 127.5 + 127.5*sin(toRadians(i*360/256)) 

}} 

 

It is also possible to use inline KickAssembler for loading pictures, music or other binary files 
and generating data bytes from these. When loading binary files in the inline KickAssembler 
code it is necessary to inform the KickC compiler using a resource directive within parenthesis. 
This is needed because KickC may have to copy the used resource files to the output directory 
where the compiled assembler code is written. Here an example of including a sprite from a 
PNG image file.  
 

const byte* SPRITE = $0c00; 

kickasm(pc SPRITE, resource "balloon.png") {{ 

    .var pic = LoadPicture("balloon.png", List().add($000000, $ffffff)) 

    .for (var y=0; y<21; y++) 

        .for (var x=0;x<3; x++) 

            .byte pic.getSinglecolorByte(x,y) 

}} 
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Comparison with standard C 

Not supported/implemented 
● Floating point types float, double  
● Runtime multiplication a * b 
● Runtime division a / b 
● Runtime modulo a % b 
● Enum enum Status { on, off } status; 
● Struct struct Point { byte x; byte y; } p; 
● Union union { byte b; word w; } u; 
● Array of arrays byte[4][4] baa; 
● Function pointers w. param void(byte)*; 
● Function pointers w. return byte()*; 
● Heap Allocation dword* dw = malloc(4); 
● Recursive functions byte fib(byte n) { return fib(n-1)+fib(n-2)} 
● Sizeof operator byte s = sizeof (word); 
● Alignof operator byte s = alignof (word); 
● Variadic functions printf(const byte* format, ...) 
● C preprocessor (see imports) 
● C standard library 

Limitations / Modifications 
● For-loops always execute the body at least once. 
● Multiplication and division only supported for constants (no runtime support for 

multiplication/division without using a library and a function call.) 
● Arrays and strings are always statically allocated (as data bytes in the resulting 

assembler). 
● Conditions in if, while, do-while and similar statements only accept boolean values. 

Numeric values are not accepted without casting. 
● Alignment directive align($100) 
● Register directive register(X) 
● Inline assembler asm { SEI CLD }; 
● Main-function void main() { … } 

 

Extensions 
● 6502 types byte, word, dword 
● Imports import “print” 
● Forward referencing variables in the outer scope 
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● Ranged for-loops for( byte i: 0.. 10) { } 
● Word operator word w = { hi, lo }; 
● Lo/hi-byte operator     byte lo = <w; <w = 12; 

The KickC Libraries 
No runtime library! 
 
Some libraries 

● print 
● c64 
● c64dtv 
● keyboard 
● division 
● Multiply 
● Fast multiply 
● sinus 
● Basic-floats 

3 Working with KickC 

KickC Command Line Reference 

The Coding Workflow / Related Tools 
● Assembling 
● Executing (Emulators or The Real Thing)  
● Editing  
● Reporting Issues 
● The Source Code 
● Contributing 

Combining KickC and KickAssembler 

Optimizing KickC Code 
● Use do {} while() instead of while() {} 
● Unsigned types are more optimal than signed types. 
● Use array indexing instead of incrementing pointers. 
● Booleans are not always very efficient. Often bytes are better.  
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● Use inline functions 
● Use (experimental) inline loops  
● Use normal assembler optimization techniques (putting a calculated result that is used 

multiple times into a variable instead of repeating the calculation, create arrays for 
lookup instead of repeating a calculation many times, loop unrolling, ) 

Handling Compiler Errors  
Missing Assembler Fragments 

4 The Compiler Architecture 
1. Loading and Parsing 
2. Creating The Single-Static Assignment Control Flow Graph and Symbol Table 
3. Optimizing the SSA Control Flow Graph 
4. Control Flow Graph Analysis  
5. Register Allocation 
6. Assembler Code Generation using Assembler Fragments 
7. Assembler Code Optimization 

Assembler Fragment Sub System 
Adding missing assembler fragments 
 
The format for the values in the fragment name is: 
 
1. "v" value / "p" pointer 
2. "b" byte / "w" word / "d" dword  
3. "u" unsigned / "s" signed / "o" boolean 
4. "aa" A-register / "xx" X-register / "yy" Y-register / "z1" zeropage {z1} / "c1" constant {c1}. 
 
When {c1} is used for values it is an immediate value, eg. in vbuc1, {c1} is a constant unsigned 
byte value. 
 
When c1 is used for pointers it is an address in main memory, eg. in pbsc1, {c1} is a constant 
pointer to a signed byte. This means that {c1} is effectively an address in main memory. 
 
vwuz1_gt_vbsc1_then_la1 for example means [if] variable word unsigned zero-page value {z1} 
is greater than variable byte signed constant {c1} then [goto] label {la1}. 
 
Fragments can use $ff as temporary storage (and $fe if 2 addresses are needed). 
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Before adding the fragment try compiling with the -vfragment flag. It will show you all the 
different fragments that the compiler is considering. You only need to implement one and then 
the fragment synthesizer can create what it needs from that. 
 
If you are wondering how a specific fragment looks you can ask the compiler using the 
-fragment flag. The following command will show all the different variations of assembler the 
compiler can use when needing to assign an unsigned byte in a zeropage variable {z1} to the 
value found in a table of unsigned bytes {c1} indexed by another unsigned byte variable on 
zeropage {z2}. 
 
kickc.sh -fragment vbuz1=pbuc1_derefidx_vbuz2  

 

You do not need to restore any register values in fragments. In fact that is part of the optimizers 
strength. 
 
The compiler analyses the ASM in each fragment and determines which registers are 
clobbered. When allocating variables to registers it avoids any allocation where a fragment 
clobbers a register holding a variable value that is needed later in the code. So it will avoid 
holding a value in A that is needed after any fragment that clobbers A - and will instead look at 
different options (X, Y or on zeropage).  
 
This produces much better ASM than each fragment restoring register values since it allows the 
compiler flexibility in choosing the register/zeropage allocation that minimises the number of 
cycles the code consumes.  
 
This is further improved by the compiler treating each assignment to a variable as a separate 
variable - meaning it often ends up choosing to hold much used variables in different registers 
or on zero page for different parts of the code. 
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