
SOFTWARE BY WILSERV

KMMM PASCAL

LEVEL IV

COPYRIGHT (C) 1984 by WILLI KUSCHE

COMPILER/TRANSLATOR

REFERENCE MANUAL

WILSERV INDUSTRIES
P. 0. BOX 456
B E L L M A W R , NEW JERSEY 08031
(609) 227-8696

TABLE OF CONTENTS

PLEASE READ THIS F I R S T . .. 1

REGISTRATION F O R M .. 2

GETTING S T A R T E D .. 4

SECURITY K E Y .. 5

SYSTEM O V E R V I E W .. 6

RESERVED W O R D S ..8

PREDECLARED I D E N T I F I E R S ...12

SUPPLIED F U N C T I O N S ... 14

SUPPLIED P R O C E D U R E S .. 17

L I M I T A T I O N S19

INPUT/OUTPUT P R O C E D U R E S ...20

EXTERNAL FILE A C C E S S ...23

OUTPUT FIELD F O R M A T T I N G ...25

RUN TIME C O N S I D E R A T I O N S ...26

OPERATING I N S T R U C T I O N S .. 27

ERROR M E S S A G E S .. 32

DISKETTE C O P Y ..34

FOREIGN D E V I C E S ... 35

REPORTING P R O B L E M S ... 36

USER S U P P O R T ... 37

LOADING P R O G R A M S .. APPENDIX A

FILE NAME S Y N T A X ..APPENDIX B

RESERVED W O R D S .. APPENDIX C

PRE-DEFINED I D E N T I F I E R SAPPENDIX D

BIBLIOGRAPHY

PLEASE READ THIS FIRST

First, please make sure you have all the parts of this package. There

should be a diskette marked 'Software by Wilserv1, a security key, this

Compiler/Translator reference manual (37 pages, A appendices and a

bibliography) and an Editor reference manual. A registration form is bound

into the Compiler/Translator reference manual.

If anything is missing, you must obtain the missing item from the

company from which you purchased the KMMM Pascal package. Contact us ONLY

if you cannot obtain satisfaction from the dealer.

Next, please fill out and return the registration form. Instructions

for filling out this form are in the next section of this manual.

Finally, use the Editor to examine the files named 'ADDENDA* and

'ERRATA'. If information contained in the 'ADDENDA' file superceeds any

information contained in this manual, you should use your favorite color

felt tip pen to correct your copy of this manual.

The 'ERRATA' file contains a list of the outstanding problems known to

exist in KMMM Pascal. It also contains a history of solved problems and

the names of the individuals who first reported these problems.

-1- COMPILER/TRANSLATOR

REGISTRATION FORM

The following page is a registration form that must be returned, in

its entirety, to Wilserv Industries, if you wish to take advantage of the

support services offered by Wilserv.

We would like to point out that it is not necessary to send money

along with the registration form. The offer of a user library is just an

incentive for you to register. Users who simply send the registration form

in, without ordering the user library, will receive the same level of

support as those users who do order. However, those who do order, will

automatically receive thp npwpst version of KMMM Pascal, if the version

designation on the registration form indicates that you do not have the

latest version.

To protect your privacy, we do not provide the names and addresses of

our registered users to any other organization, public or private.

This registration form is very valuable. Registered users can obtain

a new version of KMMM Pascal for as little as $1.50. Since the current

retail price of KMMM Pascal is $99, that means the registration form is

worth $97.50.

We accept the registration form as proof of purchase. To deter

possible fraud, the registration form is individually printed and color

coded. Therefore, a xerox copy will be returned and your request for

registration denied.

When you call our service desk for assistance, you will be asked for

the hand written serial number on your security key. This is a seven digit

number that starts with the digit eight. We will then check our files to

see if we have received your registration form. If not, you will be

provided a minimum level of assistance and urged to send the form in as

soon as possible. Subsequent requests for assistance will be declined

-2- COMPILER/TRANSLATOR

REGISTRATION FORM

until we receive the form.

Please print when filling in the blanks at the bottom of the form.

Enter the name of your company only if it is part of the mailing address.

Use the standard two character post office state abbreviation, if you know

it. If you have thfe version for the C64, do NOT check either of the other

possible responses on the 'Computer Model* line. You must fill in the

serial number of your security key. If you are ordering the user library

and enclosing a check, please do NOT staple it to the form. Finally, send

in the entire form, NOT just the piece at the bottom.

-3- COMPILER/TRANSLATOR

Before going any further, you should make a working copy of the

enclosed distribution diskette. If you do not know how to copy a diskette,

please follow the instructions in the section titled 'DISKETTE COPY'.

After making this working copy, please store the distribution diskette in a

safe, dry, cool, non-magnetic place so that you can make another working

copy if you somehow destroy the first working copy.

To become familiar with the KMMM Pascal package, we suggest that you

compile and translate some or all of the sample source files. This will

also serve to verify that the working copy you've made has no extraneous

bits in any of its files.

First, read the section titled 'SECURITY KEY' to insure that you

attach the security key to your computer correctly. Next, read the first

page of the section titled 'OPERATING INSTRUCTIONS'. Then, study the

material presented in Appendix A. This Appendix briefly describes a disk

support program that allows you to use a single character to load and run a

program.

To begin, run the Compiler. Enter 'PSIEVE' as the file name. Respond

to the next two prompts by simply pressing the return key. The Compiler

will then display the source file on the screen as it generates a sort of

shorthand, called P-code, in memory. After the display of the source file

has ended, respond to the next three prompts by simply pressing the return

key. The last depression of the return key will cause the Translator to

automatically load into memory and execute. The Translator will then

convert the P-code generated by the Compiler into 6502 machine language.

When the Translator ends, the generated machine language program will be in

memory, ready to be 'RUN' immediately or 'SAVEd' to cassette or diskette

for future use.

GETTING STARTED

■4- COMPILER/TRANSLATOR

SECURITY KEY

The little black box, supplied as a part of this package, will be
i

8
referred to, in this manual, as a security key. A similar device, supplied

with the Flex File package, is called a 'dongle', but we don't like that

name.

This security key must be attached to your computer before attempting

to run the Compiler or using the 'E ' command available with the

Editor/Compiler. If you neglect to attach the security key, there will be

NO warning message displayed.

The security key attaches onto the cassette port of your computer,

with the black box shape on the key pointing up. Do hot attempt to attach

the security key unless the power is off. If a cassette drive is currently

attached, unplug the cassette drive plug, attach the security key and plug

the cassette drive plug onto the security key.

If you own a copy of Flex File and the Flex File security key is

attached to the cassette port, then simply plug the enclosed security key

onto the back of the Flex File security key. Although the two security

keys are very similar in appearance, the Flex File security key can not be

used as a substitute for the KMMM Pascal security key.

Any program generated by KMMM Pascal does NOT require that a security

key be in place. However, the run time package portion of the program

generated from your source file is covered by copyright. We grant

permission for unlimited copying of the generated program provided you do

NOT remove the copyright display and provided you DO credit KMMM Pascal as

having been used to generate that program in any documentation (printed or

machine-readable) that accompanies the program.

-5- COMPILER/TRANSLATOR

SYSTEM OVERVIEW

KMMM Pascal is a true compiler, that is, it generates machine language

from a Pascal source file. At the time this manual is being prepared, it,

and ZOOM Pascal, are the only versions of Pascal available for the

Commodore C64.

KMMM Pascal is a subset of the Pascal described by Jensen and Wirth in

their book, which is the 'bible' for Pascal. It is also a subset of UCSD

Pascal, and supplies all of the string functions supplied by UCSD Pascal.

See the following sections of this manual for a full discussion of the

differences between KMMM Pascal and standard Pascal.

ZOOM Pascal is a subset of KMMM Pascal. It came into being when

Abacus Software agreed to take level III of KMMM Pascal, rewrite the

istruction manual, leave out the Editor/Compiler and distribute the

‘suiting package as ZOOM Pascal.

This manual is only a guide to use of KMMM Pascal and is not intended

to teach the user how to write programs in Pascal.

KMMM Pascal requires at least 24K of RAM to run successfully. It also

requires some form of external storage device, for source files and

generated programs. This external device may be either a cassette or a

diskette drive. Although KMMM Pascal will work with a cassette drive, use

of a cassette drive is suitable only for small source or data files. A

cassette should NOT be used for loading the programs that make up KMMM

Pascal.

The programs which make up KMMM Pascal are totally compatible with

Commodore BASIC. They are loaded into memory and executed as if they were

BASIC programs, even though they are written in machine language. This is

also true for the program generated from your source file.

There is a text editor, which is used to prepare or modify Pascal

-6- COMPILER/TRANSLATOR

SYSTEM OVERVIEW

source files to be used as input to the Compiler. The Editor is described

in a separate manual following this Compiler/Translator manual.

Actually, there are two versions of the Editor. The bigger of the two

is the Editor/Compiler, which is the editor to be used in most cases. The

Editor is supplied for use in editing source files which are too large for

the Editor/Compiler.

The Editor/Compiler is so named because it is a combination of the

syntax checking portion of the Compiler with the smaller Editor. It allows

a source file being created or modified to be checked for proper syntax

before being stored on cassette or diskette.

The Compiler reads a source file stored on cassette or diskette and

generates an intermediate P-code file in memory. This P-code file is used

as input to the Translator, which is loaded into memory by the Compiler.

The Translator creates true machine code which may be executed immediately

or stored on cassette or disk for later execution. The source for the

Translator is actually coded in KMMM Pascal, and the Translator is output

of this system.

-7- COMPILER/TRANSLATOR

RESERVED WORDS

This section lists all the reserved words defined by 'standard

Pascal'. If KMMM Pascal does not deviate from 'standard Pascal', then the

reserved word is merely noted as being standard. If differences exist

between 'standard Pascal' and KMMM Pascal, then the reserved word is

followed by a description of the differences.

The following reserved word must be the first non-comment element of a

KMMM Pascal source file:

PROGRAM: KMMM Pascal requires that a space and an identifier follow

the reserved word 'PROGRAM', as does 'standard Pascal'. KMMM Pascal will

bypass any words or special characters that follow the program identifier,

up to and including a semi-colon.

PROGRAM SAMP1;
PROGRAM SAMP2(INPUT,OUTPUT);
PROGRAM SAMP3('description',date);

The following six reserved words are discussed out of alphabetical

order, because they serve as the starting point of the major sections of a

Pascal block:

LABEL: Standard. However, KMMM Pascal will flag the reserved word

'GOTO' as an unimplemented statement.

CONST: Standard. In addition, KMMM Pascal will allow you to define

hexadecimal constants. A dollar sign, followed by two hexadecimal digits,

serves to declare a constant of type 'CHAR'. A dollar sign, followed by

four hexadecimal digits, serves to declare a constant of type 'INTEGER'.

CLEARSCREEN=$93; (* type is 'CHAR' *)
PETSCREEN=$8000; (* type is 'INTEGER' *)
C64SCREEN=$0400; (* type is 'INTEGER' *)

TYPE: Standard, except that the reserved word 'FILE' may not appear

in a type declaration. There are also implementation dependent

restrictions.

-8- COMPILER/TRANSLATOR

RESERVED WORDS

VAR: Standard, except that the component type for a 'FILE'

declaration may only be of type 'CHAR' or 'RECORD'. There are also certain

implementation dependent restrictions.

FUNCTION: Standard, except that only value and variable parameters

may be passed as arguments to a function. In addition, KMMM Pascal allows

the type of the value returned by the function to be of type 'STRING'.

PROCEDURE: Standard, except that only value and variable parameters

may be passed as arguments to a procedure.

The following remaining reserved words are listed in alphabetical

order:

AND: Standard.

ARRAY: Number of dimensions limited to two. Index type may only be

an integer sub-range.

BEGIN: Standard.

CASE: Standard, except that this reserved word may not appear in a

record declaration. In additional, KMMM Pascal allows the selector

expression in a 'CASE' statement to be of type 'STRING'.

DIV: Standard.

DO: Standard.

DOWNTO: Standard.

ELSE: Standard. In addition, KMMM Pascal allows 'ELSE' to be used

as a synonym for 'OTHERWISE' in a 'CASE' statement.

END: Standard.

FILE: See the sections of this manual that discuss input/output.

FOR: Standard.

GOTO: Will be flagged as an unimplemented statement.

IF: Standard.

IN: The operand following the word 'IN' may only be a literal.

-9- COMPILER/TRANSLATOR

RESERVED WORDS

This literal may only be of type 'CHAR' or of an enumerated type.

MOD: Standard. However, the standard is not defined when the value

of the second operand is negative, so we followed the standard set by the

Pascal for the VAX machines.

NIL: Standard.

NOT: Standard.

OF: Standard.

OR: Standard.

OTHERWISE: Standard (ISO). May only appear in a 'CASE' statement.

PACKED: Treated as a comment.

RECORD: Standard, except that the reserved word 'CASE' may not

appear in a record declaration. Also, there are certain implementation

dependent restrictions.

REPEAT: Standard.

SET: Will be flagged as an unimplemented data type.

THEN: Standard.

TO: Standard.

UNTIL: Standard.

WHILE: Standard.

WITH: Will be flagged as an unimplemented statement.

In addition to the above reserved words, KMMM Pascal still retains

four reserved from its early days in the marketplace. These are:

CALL: This reserved word functions exactly like the 'SYS' verb in

BASIC. The reserved word 'CALL' is followed by an integer expression

enclosed in parentheses. The expression is the address of the machine

language routine to be executed. The routine must terminate in an 'RTS'

instruction.

MEM: This reserved word is a predeclared variable identifier that

-10- COMPILER/TRANSLATOR

RESERVED WORDS

allows you to address the entire address space of your computer. The

internal declaration is as follows:

MEM: ARRAY[0..655653 0F CHAR5

Therefore, the reserved word 'MEM' must always be followed by an integer

expression enclosed in brackets. Examples:

CHVAR:=MEM[$80001;
INTVAR:=0RD(MEM[10J);
MEM[10}:=CHVAR;
MEM[$8000J:=CHR(INTVAR);

SHL and SHR: These reserved words may appear as a multiplying

operator between two factors in a term of an expression. An integer factor

to the left of 'SHL' will be shifted left by the number of bits represented

by the value of the integer factor to the right of 'SHL'. Similarly, 'SHR'

will cause a shift right.

The following example shows how to store an address value in memory:

(* store low half *)
MEM[STOREADDR]:=CHR(ADDRVALUE);
(* store high half *)
MEM[STOREADDR+lJ:=CHR(ADDRVALUE SHR 8)

-11- COMPILER/TRANSLATOR

PREDECLARED IDENTIFIERS

In addition to the reserved words defined by standard Pascal, there

are words which are predeclared by standard Pascal. They differ from

reserved words in that you may redefine them for your own use. If you do

so, then your definition of these standard identifiers will replace the

defined usage in Pascal. However, doing so is not recommended.

All three standard constant idept~i f i prs have been implemented in KMMM

Pascal. They are 'FALSE', 'TRUE1 and 'MAXINT'. Since a variable of type

'INTEGER' holds 15 bits plus a sign bit in KMMM Pascal, the predeclared

value of 'MAXINT' is 32767.

All four standard type identifiers have been implemented in KMMM

Pascal. They are 'BOOLEAN', 'CHAR', 'REAL' and 'TEXT'. A variable of type

'REAL' in KMMM Pascal occupies five bytes in memory and has the same format

as a floating point variable in BASIC.

KMMM Pascal has also implemented a type called 'STRING', which is a

standard type identifier in UCSD Pascal. Whenever the word 'STRING' is

used, it may be followed by a numeric literal enclosed in square brackets,

which specifies the maximum size of the 'STRING'. If size is not

specified, the size defaults to 80 characters. The limit of the size of a

'STRING' is 196 characters.

Examples of valid declarations:

VAR FIRSTNAME: STRING[12];
LASTNAME: STRING[25};
ADDRESS1, ADDRESS2: STRING[30j;
CITY: STRING[20j;
STATE: STRING[2];
ZIP: STRING[5J;
LAZY: STRING; (* SAME AS STRING[80j; *)

Both standard file identifiers have been implemented in KMMM Pascal.

They are 'INPUT' and 'OUTPUT'.

The remaining standard identifiers are discussed in following

-12- COMPILER/TRANSLATOR

PREDECLARED IDENTIFIERS

sections. The complete list of standard identifiers appears in Appendix D.

-13- COMPILER/TRANSLATOR

1

Standard Pascal defines a nnmhpr nf functions. These are 'ABS',

'ARCTAN', 'CHR', 'COS', 'EOF', 'EOLN', 'EXP', 'LN', 'ODD', 'ORD', 'PRED',

'ROUND', 'SIN', 'SQR', 'SQRT', 'SUCC' and 'TRUNC'. KMMM Pascal has now

implemented all of these functions, according to the standard.

In addition, KMMM Pascal supplies additonal predeclared functions.

Some of these functions are equivalent to functions supplied by UCSD

Pascal. The additional functions in KMMM Pascal are:

ANDB: Return value is of type 'INTEGER' and is the Boolean 'AND' of

two arguments of type 'INTEGER'.

ANDB(15,3) returns 3

CONCAT: Return value is of type 'STRING' and is the concatenation of

two or more arguments of type 'STRING'. This function is equivalent to the

function of the same name in UCSD Pascal. KMMM Pascal, in addition, allows

any of the arguments to be of type 'CHAR' and will automatically generate

the necessary type conversion logic.

CONCAT('ABC','D ') returns 'ABCD'
CONCAT('AB','C','D','EF') returns 'ABCDEF')

COPY: Return value is of type 'STRING'. This function is equivalent

to the function of the same name in UCSD Pascal and to the 'MID$' function

in BASIC.

C0PY('ABCD',1,1) returns 'A'
COPY('ABCD',2,1) returns 'B'

DELETE: Return value is of type 'STRING'. This function is the

inverse of the 'COPY' or 'MIDSTR' function. There is a procedure named

'DELETE' in UCSD Pascal, but it is implemented as a function in KMMM

Pascal, due to an error in a text used as a reference.

DELETEC'ABCD',1,1) returns 'BCD'
DELETECABCD',2,1) returns 'CD'

SUPPLIED FUNCTIONS

-14- COMPILER/TRANSLATOR

SUPPLIED FUNCTIONS

GETKEY: Return value is of type 'CHAR' and is the value of a

keystroke on the system keyboard. If no key is pressed, then this function

returns the value CHR(O). There are no arguments for this function.

INKEY: Return value is of type 'CHAR' and is the value of a

keystroke on the system keyboard. If no key is pressed, then this function

will wait until a key is pressed. There are no arguments for this

function.

LEFTSTR: Return value is of type 'STRING'. This function is

equivalent to the 'LEFT$' function in BASIC.

LEFTSTR('ABCD',1) is 'A'
LEFTSTR('ABCD',2) is 'AB'

LENGTH: Return value is of type 'INTEGER' and is the length of the

argument, which is of type 'STRING'. This function is equivalent to the

function of the same name in UCSD Pascal.

LENGTH('ABCD') is 4

MIDSTR: Synonym for the function named 'COPY'.

NOTB: Return value is of type 'INTEGER' and is the Boolean 'NOT' of

a argument of type 'INTEGER'.

N0TB(15) returns -16

ORB: Return value is of type 'INTEGER' and is the Boolean 'OR' of

two arguments of type 'INTEGER'.

0RB(5,3) returns 7

POS: Return value is of type 'INTEGER', which represents the

position of the first argument within the second argument. Both arguments

must be of type 'STRING'. If the first argument occurs several times

within the second argument, the 'POS' function will return only the first

occurance. If the first argument does not occur within the second

argument, the 'POS' function will return a zero value. The 'POS' function

-15- COMPILER/TRANSLATOR

SUPPLIED FUNCTIONS

will accept an expression of type 'CHAR' as the first argument, but not as

the second argument. This function is equivalent to the function of the

same name in UCSD Pascal.

POS('A\'ABCD') is 1
POS('B\'ABCD') is 2
POSC’C'.'ABCABC') is 3
POS('E','ABCD') is 0

RIGHTSTR: Return value is of type 'STRING1. This function is

equivalent to the 'RIGHT$' function in BASIC.

RIGHTSTR('ABCD',1) is 'D'
RIGHTSTR('ABCD',2) is 'CD'

RND: Return value is of type 'REAL' and is a random value. This

function requires an argument of type 'INTEGER' or 'REAL'. If the argument

is a positive value, the function will return a new random value. If the

argument is a negaive value, the function will first alter the internal

seed value before returning a new random value.

-16- COMPILER/TRANSLATOR

Standard Pascal defines a number ol^acadaclared procedures. These are

'GET', 'DISPOSE', 'NEW', 'PACK', 'PAGE', 'PUT', 'READ', 'READLN', 'RESET',

'REWRITE', 'UNPACK', 'WRITE' and 'WRITELN'. Of these, KMMM Pascal has not

implemented the 'DISPOSE', 'PACK', 'PAGE' and 'UNPACK' procedures. All of

the implemented standard procedures, except 'NEW', are discussed in a

following section.

The 'NEW' procedure is used to allocate dynamic storage. It may have

only one argument, which is a variable identifier whose base type is

'RECORD'.

In addition, KMMM Pascal supplies additonal predeclared procedures.

Some of these procedures are equivalent to procedures supplied by UCSD

Pascal. The additional procedures in KMMM Pascal are:

CLOSE: The 'CLOSE' procedure may be used to close a file opened via

a 'RESET' or 'REWRITE' procedure. The 'CLOSE' procedure requires a single

argument which is the identifier of the file to be closed. Use of this

procedure is not required, since the run time package closes all open files

when a KMMM Pascal machine language program ends. However, it must be used

if you intend to access files on different diskettes inserted in the same

disk drive during the course of a run.

ERASE: The 'ERASE' procedure may be used to erase or scratch a file

from a diskette. The 'ERASE' procedure requires a single argument of type

'STRING', which is the name of a file to be deleted from a diskette. The

argument must include a drive specifier.

ERASE('0:DISKFILE');

EXIT: This procedure is similar to the procedure of the same name in

UCSD Pascal. The 'EXIT' procedure may be used to exit from a procedure or

function. The 'EXIT' procedure requires a single argument which is the

SUPPLIED PROCEDURES

-17- COMPILER/TRANSLATOR

SUPPLIED PROCEDURES

identifier of the procedure or function in whose body the 'EXIT' is

located. To exit from the main body of the program,.use the identifier

'PROGRAM'.

RENAME: The 'RENAME' procedure may be used to change the name of a

file on a diskette. The 'RENAME' procedure requires two arguments of type

'STRING'. The first argument is the name of an existing file on diskette.

The second argument is the new name to be given to the file. The second

argument must have a drive specifier, however, the specifier is optional in

the first argument.

RENAME('OLDNAME',10:NEWNAME');

-18- COMPILER/TRANSLATOR

LIMITATIONS

The following limits exist on declarations:

1. Limit of 32 different enumerated types

2. Limit of 32 different ARRAY types

3. Limit of 32 different RECORD types

4. The maximum size of a string used as a parameter for a function

or a procedure is 80 bytes

5. A structured type used as a parameter for a function or a

procedure must be declared as a variable parameter

6. The parameter list in the heading of a function or procedure

declaration may contain a maximum of two STRING types

7. The maximum size of the component type of an ARRAY is 255 bytes

8. The total number of bytes allocated to the fields comprising a

RECORD type may not exceed 255

9. The fields comprising a RECORD type may not be structured

-19- COMPILER/TRANSLATOR

INPUT/OUTPUT PROCEDURES

The procedures 'READ' and 'READLN' allow the user to read data from

-' / * & *' jk
the keyboard, a cassette file or a disk file into a variable or a list of

variables. The procedure ’GET' allows the user to fill the file buffer

from those devices. The procedures 'WRITE' and 'WRITELN' allow the user to

write an expression or list of expressions to the console screen, a

cassette file or a disk file. The procedure 'PUT' allows the user to empty

the file buffer to those devices. The procedures 'RESET' and 'REWRITE'

must be executed in order for data transfer to take place between the

program and cassette or disk files.

The 'READ(LN)' and 'WRITE(LN)' procedures may only be used with file

identifiers whose component type is 'CHAR'. The 'GET' and 'PUT' procedures

may only be used with file identifiers whose component type is 'RECORD'.

The following program fragment gives some examples of use of the READ

procedure:

VAR CHVAR: CHAR;
INTVAR: INTEGER;
REALVAR: REAL;

BEGIN
READ(CHVAR); (* Example 1 *)
READ(INTVAR); (* Example 2 *)
READ(REALVAR); (* Example 3 *)
READ(INTVAR$); (* Example A *)

END.

Example 1 will cause a single character to be read from the keyboard and

stored in the variable CHVAR. Examples 2, 3 and 4 will cause a combination

of character input and data conversion. The number of characters read

depends on the declared type of the variable being read into. For

'INTEGER' and 'REAL' variables, characters will be read until a stopping

character is encountered. For 'INTEGER' variables, the stopping character

is any character other than the digits 'O' to '9'. For 'REAL' variables,

the stopping character is any character other than the digits 'O' to '9',

-20- COMPILER/TRANSLATOR

INPUT/OUTPUT PROCEDURES

the decimal point or the letter 1E 1. For hexadecimal input into an

'INTEGER' variable, the stopping character is any character other than the

digits 'O' to '9' and the letters 'A' to 'F '.

This method of input is quite different from the way BASIC operates.

In BASIC, entering the string '39X' in response to a request for numeric

input will result in '?REDO FROM START'. In KMMM Pascal, entering the

string '39X' in response to a request for numeric input will not result in

an error message. A display of the variable read into will show a value of

39.

The following program fragment gives some examples of use of the WRITE

procedure:

CONST CHCONST = 'A';
STRCONST = 'XYZ';
INTCONST =13;
REALCONST = 2.3E+4;

BEGIN
WRITE(CHCONST);
WRITE(INTCONST-2,STRCONST);
WRITE(1=1,REALCONST);
WRITE(INTCONST$)

END.

The output of this program is:

A11XYZTRUE23000000D

If all the WRITE's are changed to WRITELN, then the output is:

A
11XYZ
TRUE23000
000D

If the first or only parameter of a 'GET', 'READ', 'READLN', 'PUT',

'WRITE' or 'WRITELN' procedure is file identifier, then the I/O operation

will involve an external file instead of the system console. Before

attempting a 'READ(LN)' or 'WRITE(LN)' to an external file, instead of the

console, a 'RESET' or 'REWRITE' procedure must be executed to establish a

data path for that file. The 'RESET' procedure is used for input files and

-21- COMPILER/TRANSLATOR

INPUT/OUTPUT PROCEDURES

the 'REWRITE' procedure for output files. The first parameter of either a

'RESET' or 'REWRITE' procedure must be a file identifier. The second

parameter is the external file name and must be a string expression. The

following program fragment shows three different methods for opening the

same disk file on drive 0 for input:

CONST CONSTNAME = '0:ABC';
VAR INFILE : TEXT;

VARNAME : STRING[16);

RESET(INFILL,'6:ABC');

RESETCINFILE,CONSTNAME);
• ••••••••••••••••••••a**
VARNAME := '0:ABC';
RESET(INFILE,VARNAME)

If the file 'ABC' does not exist on drive 0, then the function

'EOF(INFILE)' will return the value 'TRUE' immediately after the reset

procedure is completed. Older versions of the run time package would abort

the program if a specified file did not exist.

A more complete discussion of external file access appears in the

following section of this manual.

-22- COMPILER/TRANSLATOR

EXTERNAL FILE ACCESS

Normally, a 'GET*, 'READ' or ’READLN' procedure will read from the

console keyboard and a 'PUT', 'WRITE' or 'WRITELN' procedure will write to

the console screen. However, input or output may be directed to an

external file if the first parameter of a 'READ', 'READLN', 'WRITE' or

'WRITELN"' is a variable defined as being of type 'TEXT'. To do so, a data

path must first be established. The 'RESET' procedure must be executed for

a file that you intend to 'READ' or 'READLN' from; the 'REWRITE' procedure

must be executed for a file that you intend to 'WRITE' or 'WRITELN' to. A

file opened with a 'REWRITE' may also be read from, but onlv if appropriate

for the device being used.

The first parameter of a 'RESET' or 'REWRITE' procedure must be a file

identifier. This first parameter is followed by a variable number of

parameters. If the next parameter is an expression of type 'STRING', the

Compiler considers it to be the file name. This file name expression must

be the last parameter. This two parameter format will be referred to as

the 'automatic' format and can only be used with sequential files on

cassette or diskette. If a diskette file is indicated, device 8 will be

used.

If the second parameter is not an expression of type 'STRING', then it

must be an expression of type 'INTEGER'. The run time package will use

this value as the IEEE device number. The second parameter must be

followed by a third parameter, which must be an expression of type

'INTEGER' and will be passed to the IEEE device as the 'secondary address'.

The fourth parameter must be an expression of type 'STRING', but may be

omitted if a file name is not appropriate for the IEEE device being used.

This three or four parameter format will be referred to as the 'manual'

format.

-23- COMPILER/TRANSLATOR

EXTERNAL FILE ACCESS

The 'automatic* format is so designated because it will use the

command channel to check for a successful file open if the file name prefix

indicates a disk file. It will also add an ',S,R* or ',S,W' suffix to the

file name if the file name prefix indicates a disk file. For those of you

who may wish to read or write 'PGM' files, then a ',P ' suffix is allowable

in the file name and will cause the ',S,R' or ',S,W' suffix normally

appended, to change to ',P,R' or ',P,W'.

The 'manual' format will do nothing extra for you. It will not adjust

the file name; it will not check for a successful file open. If the device

being used, such as the standard CBM disk drives, requires special

characters in the file name, you must provide them. Any special command

channel programming must be explicitly coded.

The standard distribution diskette now contains additional sample

programs that show how to access files. The program 'PCCEXMP' shows how to

read from and write to the CBM disk command channel in order to scratch a

file on a CBM diskette. The program 'PLSTCBMD' shows how to access the

directory of a CBM diskette as a file. The program 'PRANDCR' will create a

random file and the program 'PRANDUPD' is a very simple random file update

program. Please note that these two random access proerams will onlv work

with disk drives that have DOS 2.0 or higher.

-24- COMPILER/TRANSLATOR

OUTPUT FIELD FORMATTING
■0---------------------------

KMMM Pascal supports field width specifications in 'WRITE' or

m S " ' w-'

'WRITELN' procedures. A field width specification consists of a colon

followed by an integer expression. The field width specification may be

used with any data type. A second specification is possible with the

'REAL' data type, and specifies the number of digits to the right of the

decimal point to be displayed.

Integer expressions may have a '$' suffix to indicate that output in

hexadecimal is desired. The standard width for hexadecimal output is four

character positions. By using a '$:2' specification, the field will be a

hexadecimal value two positions wide instead of four.

Example of a valid statement:

WRITE(1:2,1.1:4,'?':2,'ABC': 4,TRUE:5,16$:2);

The output of the above statement would be:

' 1 1.1 ? ABC TRUE10'

Padding spaces are added to the left of the output field, but only if

the size of the output field is less than the width specification, it îjhtyosf\'f̂ L.

If the width specifications were omitted from the above example, the

statement would be:

WRITE(1,1.1,'?','ABC',TRUE,16$);

The output would then be:

'11.17ABCTRUE0010'.

-25- COMPILER/TRANSLATOR

RUN TIME CONSIDERATIONS

A program generated by KMMM Pascal can be handled as if it were a

* SM-m
BASIC program text file. The proeram consists of a single BASIC line

followed by machine language. The machine language consists of a run time

package plus the machine language generated from your Pascal source file.

I]Te_j^un<>timej£ack^ 6K on PET/CBM systems, 8K on the 64.

Space for variables declared in a KMMM Pascal program is allocated

immediately after the last byte of machine language generated from your

source file. Therefore, the space available for variables depends on the

amount of RAM that exists beyond the end of your proeram.

The first version of level IV of KMMM Pascal was the first to

implement dynamic storage allocation. The storage allocated to pointer

variables grows down from the top of user memory. The high memory address

is taken from the BASIC high memory address in the versions of KMMM Pascal

for PET/CBM machines. The high memory address defaults to $C900 in the

version of KMMM Pascal for the 64.

To change this default address to a lower value, you must poke two

values into the generated program before it is used for the first time.

The first address to be changed is 4708. The current content of this

address is 201, the decimal equivalent of $C9. The second address to be

changed is 4712. The current content of this address is 199, two less than

the first address. To change the default address from $C900 to $C000, you

would poke 192 into 4708 and 190 into 4712, after verifying that the

current contents of these addresses are exactly as stated.

-26- COMPILER/TRANSLATOR

The KMMM Pascal Compiler is named 'COMPILER-KMMM' on the distribution

diskette. You may wish to shorten or change the name for operating

convenience, but the following instructions assume that the name of the

compiler program starts with 'CO'. Do not change the name of the

Translator, as its name is embedded in the Compiler.

There are two ways of loading programs into your Commodore system from

disk. The first is to use the BASIC disk support commands that are part of

Commodore BASIC. The second involves the use of a special disk support

program, sometimes referred to as the DOS Wedge. This special disk support

program is discussed in detail in Appendix A.

The standard method of executing the Compiler is to enter the BASIC

command 'LOAD "C0*",8\ This should cause the activity light on the disk

drive to come on, as the Compiler is loaded into memory. When the loading

process is complete, the 'READY.' message should appear. When it does,

enter the BASIC command 'RUN'.

Owners of PET/CBM machines with 4.0 BASIC installed in ROM may use the

slightly shorter BASIC command 'DLOAD "CO*' to load the Compiler into

memory. This command must be followed by the 'RUN' command to actually

start the Compiler.

Finally, users who decide to utilize the wedge program may execute the

Compiler by entering the up arrow character followed by the letters 'CO*'.

After printing a copyright statement, the Compiler will prompt the

user for the name of the KMMM Pascal source file to be compiled. See the

Appendix B for rules about specifying file names. Simply pressing the

return key or entering a file name with a cassette drive designator ('T:'

or 'U :') will cause the Compiler to read the source file from cassette.

Entry of a file name without a drive designator will cause the directory

OPERATING INSTRUCTIONS

-27- COMPILER/TRANSLATOR

OPERATING INSTRUCTIONS

' | | H
(or directories) of the disk drive(s) to be sea^hedl Entry of a file name

with a disk drive designator ('0:' or 'I;') will cause onlv the directory

of the specified drive to be searched. % * ■

Entry of an up arrow character ('f') may be used to terminate the

Compiler.

After successfully opening the KMMM Pascal sdurce file, the Compiler

will issue a prompt based on the state of the screen mode. If the screen

is in graphics mode, the prompt will be 'ASCII SOURCE FILE? '. Entry of a

'Y ' will cause the screen to be shifted to the text mode; entry of any

other character will be ignored.

If the screen is in text mode, the prompt will be 'PETSCII SOURCE

FILE? '. Entry of a 'Y' will cause the screen to be shifted to the

graphics mode; entry of any other character will be ignored.

Please ignore the following paragraph, if you are using the version of

KMMM Pascal for the Commodore 64.

-if 4;he response to either variant of the above prompt results in the

screen being in the text mode, then the Compiler will prompt with 'OLD

CHAR. GEN. ROM’ '. Enter a 'Y' if you have an old character generator ROM

in your PET, otherwise just press the return key.

The Compiler will then prompt with 'USE PRINTER? '. Entry of a 1Y '

will direct the source listing to a printer; entry of any other character

will cause the source listing to appear on the system console display. *]Tf

the source listing is directed to the printer, each source line is
-- ~-- ------- ---- -----— e- “ — — ^

preceeded by its line number, which can be used when editing the source

file.

If you decide to route the source listing to a printer, you will

receive three more prompts. The first is 'DEVICE NUMBER? '. Enter the

printer device number, which must be a single digit. The second prompt is

-28- COMPILER/TRANSLATOR

OPERATING INSTRUCTIONS

•GENERATE LINE FEED? '. Enter a *Y ' if your printer does not automatically

generate a line feed when it receives a carriage return character. The

third prompt is 1 DISPLAY P-CODE'NUMBERS? '. Enter a 'Y' if you wish to

have the P-code numbers displayed between the source line number and the

source line itself. The P-code number is the number of the first P-code

generated by the associated line of the source file.

If an error is discovered by the Compiler, an up arrow ('t') is

displayed under the source element causing the error, followed by an error

message describing the error. The user must then use the Editor/Compiler

or the Editor to create a corrected version of the source file and then

re-run the Compiler.

If no errors are found in the source file, the Compiler will then

prompt with 'DUMP P-CODE TO DISK? '. Enter a 'Y ', if you wish to transfer

the P-code stored in memory to a disk file. The file name for this file is

created by appending '.PC' to the program identifier in the source file.

The program identifier is the identifier that follows the reserved word

'PROGRAM' at the beginning of the source file. If this program identifier

is longer than eight characters, only the first eight are used to create

the file name for the disk P-code file. Dumping the P-code to disk is of

no value at this time, since the P-code disassembler and a version of the

Translator that reads P-code stored on disk are not yet ready for general

distribution.

The Compiler will then prompt with 'PRESS RETURN WHEN READY: '. When

you press the return key, the Compiler will reset the screen mode to what

it was at the time you loaded the Compiler.

If there are no errors, then the Compiler will prompt with 'EXECUTE

TRANSLATOR? Y'. If you change the default 'Y ' to some other character,

then the Compiler will prompt with 'COMPILE ANOTHER FILE? '. Entry of a

-29- COMPILER/TRANSLATOR

OPERATING INSTRUCTIONS

1Y 1 will cause the Compiler to restart; entry of any other character will

cause a return to BASIC.

Simply pressing the return key in response to the 'EXECUTE TRANSLATOR?

Y' prompt will cause the Translator to load into memory and execute. A

reminder: if you have onlv a single disk drive and removed the diskette

with the Translator on it in order to insert the source file diskette, be

sure to re-insert the Translator diskette before pressing the return key,

which will cause an attempt to load the Translator into memory.

After printing a copyright statement, the Translator will display a

message as it begins each of its internal phases and will display an

asterisk for each 10 P-mrip.q it processes. This will let those of you who

compile large programs know that the Translator is alive and well, and has

not disappeared off into limbo.

In a first pass, the Translator counts the number of P-codes referred

to by other P-codes. After completion of this first pass, it displays a

message 'n LABELS' on the system console, where 'n' is the count of P-codes

referred to.

In a second pass through the generated P-code, the Translator

generates machine language. At the end of the second pass, it displays run

statistics on the system console and returns to BASIC.

The Translator generates a machine language program that consists of a

6K (8K in the C64 version) package of support subroutines followed by the

machine language generated from your source file. This combined block of

machine language is preceeded by a BASIC 'SYS' statement which allows the

program to be executed by entering a BASIC 'RUN' command.

The Translator sets the program boundary pointers used by Commodore

BASIC so that a standard BASIC 'SAVE' or 'DSAVE' command can be used to

store the entire generated program on cassette or diskette.

-30- COMPILER/TRANSLATOR

OPERATING INSTRUCTIONS

Because of this, it is possible to defer the step of saving the

generated proeram until after the program is tested to see if it runs as

desired.

-31- COMPILER/TRANSLATOR

Most of the error messages displayed by the Compiler or the

Editor/Compiler are self-explanatory. There is one message, however, which

is not. That one is 'END TEXT FOUND'. This message will appear if you

have a '(*' without a matching '*)'. Sometimes the onlv way to locate this

problem is to direct the output of the Compiler to the printer. If the

P-code numbers get stuck on one value, then the problem is in the area of

the last increment in the P-code number.

The run time package will disnlay an error and terminate the program

if certain run time errors occur. These are:

ERROR MESSAGES

1. 'n FILE - BAD FILE NAME'

2. 'n FILE NOT OPEN'

3. 'n FILE READ ONLY'

4. 'n FILE * DISK ERROR nn'

5. 'DIVIDE BY ZERO'

6. 'OUT OF MEMORY'

The 'n' in the first four messages is the sequential number assigned by the

Compiler as it encounters each file identifier in a variable declaration

section of a source file.

Message number one occurs whenever the run time package finds a file

name that violates the file name syntax rules laid out in Appendix B. The

most common mistake made by users is to use the letter 'O', instead of the

digit 'O' in the drive specifier.

Message number two occurs if you attempt to perform an I/O operation

to an external file without first doing either a 'RESET' or 'REWRITE'

procedure for that file identifier.

Message number three occurs if you attempt to perform an output

operation to an external file that was opened using a 'RESET' procedure.

-32- COMPILER/TRANSLATOR

ERROR MESSAGES

Message number four should be self-explanatory. The 'nn' is the

Commodore disk error code sent by the DOS in the disk drive. Refer to the

error codes in your Commodore disk drive manual.

Message number five occurs if you attempt to divide by zero.

Message number six occurs if the stack pointer address and the bottom

of the 'heap' get within 512 bytes of each other. The stack grows upwards

in memory and the storage space for records allocated via the 'NEW'

procedure (the 'heap') grows downward.

-33- COMPILER/TRANSLATOR

DISKETTE COPY

The fastest and easiest way to make a working copy of the distribution

diskette is to own a dual drive disk unit, such as the Commodore 4040 or

8050 or the Micro Systems Devices SD-2. These drives have disk copy logic

built into them.

If you do not own a dual drive disk unit, you can transfer all the

'PRG' type files (except 'CBMWEDGE1, 'CIESUPP' and 'BOTHSUPP') from the

distribution diskette to the working copy using the standard BASIC verbs

'LOAD' and 'SAVE'. The remaining files must be transferred using some kind

of copy program.

There are a large number of diskette backup programs available. The

best of these are available from commercial sources, although there are

some reasonably good public domain programs available. Check with your

local Commodore user group.

If you do not own any kind of copy program, there is a Pascal source

file on the distribution diskette, named 'PCOPYPRG' that, after being

compiled, can copy the modules that can not be transferred using the 'LOAD'

and 'SAVE' BASIC commands. These are: 'CBMWEDGE', 'CIESUPP' and

'BOTHSUPP'.

The 'SEQ' type files may be transferred using the Editor. Use the

command sequence 'GRfilename!Y!GC!!' to read a specific 'SEQ' file in from

the distribution diskette, where 'filename' is the name of the file to be

transferred. Then, remove the distribution diskette, insert the new

working copy and issue the command sequence 'GWO:filename!P!GC!!'. Both of

the above command sequences assume you have elected to use '!' as the

escape character.

-34- COMPILER/TRANSLATOR

I*

FOREIGN DEVICES

Foreign devices are those hardware accessories manufactured by

companies other than Commodore. Usually, these devices cause no problems

for KMMM Pascal. However, some devices require that certain memory

locations be left undisturbed.

We provide re-written support routines so that the 'CIE', an IEEE

adaptor from Micro Systems Devices, can be used with KMMM Pascal. See

appendix A for instructions on using these special routines.

We generated a variation of version IV.4 of KMMM Pascal that worked

with the 'Screenmaker', an 80 column video board from CGRS Microtech.

However, that version is now obsolete. If you need a version of KMMM

Pascal that works with 'Screenmaker*, please contact Wilserv Industries.

We have spent quite a few hours analyzing the code that accompanies

the Cb4-link from Richvale Communications of Canada, an IEEE adaptor. We

still have not figured out how to resolve the memory conflict between this

device and KMMM Pascal. Some users have had success doing so. We would

like to hear from those users.

We believe it would not take much to make the 80 column video display

card from Data-20 work with KMMM Pascal. Until we get our hands on one, we

won't know for sure.

-35- COMPILER/TRANSLATOR

We have exerted a great deal of effort to insure that the programs

that comprise KMMM Pascal run without error. However, due to the nature of

a compiling system, you may find an error in the system. We therefore urge

you to report problems. If you don't report problems, we can't fix them.

We are especially interested in receiving examples of misleading or unclear

error messages.

Sometimes, if an error is trivial, and you find a way around the

problem quickly, there is a tendency to forget it happened. Therefore, if

you find a problem in a source file, we ask that you take a moment to copy

the source file to a spare diskette and send that diskette along with a

brief note describing the problem to us, at the address on the front of

this upgrade manual.

Furthermore, because of the current heavy work load at Wilserv

Industries, we will very likely insist that you send in the source file

that shows the error you have discovered. Last year, when the first

versions of level IV were released, there were numerous problems and some

were so major, they were easily described over the phone. However, at the

current level of maturity, we will almost always need your source file to

locate the problem.

REPORTING PROBLEMS

-36- COMPILER/TRANSLATOR

USER SUPPORT

Our phone number is (609)227-8696. This number is valid from 10 A. M.

to 10 P. M. (EST or EDT), Monday to Friday. Saturday, the hours are 10 to

2. No calls accepted on Sunday.

If you have questions or a problem, please feel free to call.

However, we do ask that you carefullv read all the enclosed documentation.

It is not th<= easiest material to read, but we believe that all the

information needed to use the package has been presented.

Before calling, make sure you have followed the instructions in the

section of this manual titled 'REGISTRATION FORM'. Also, be aware that if

the above number is answered on the first ring, it is an answering machine

that is answering. This answering machine is controlled by a timer and

will only be on from noon to five P. M. (EST or EDT), Monday to Friday. If

you call around 5 P. M. and get the answering machine, you may be cut off

by the timer.

Occasionally, the answering machine will be on from 10 A. M. to noon.

This occurs only when we close the office, either due to a minor emergency

or because Wilserv is temporarily closed for vacation.

If you get frustrated trying to reach us by phone, please complain in

writing to our mailing address.

-37- COMPILER/TRANSLATOR

The standard BASIC command to load a program from a

diskette into memory is 'LOAD " f i l e n a m e " ,8'. Users of

PET/CBM machines with 4.0 BASIC installed may use the

slightly more convenient command 'DLOAD "filename'. In

either case, the BASIC command 'RUN' must be entered to

actually start the program after the load operation is

c o m p l e t e .

An alternate method of running a program stored on

diskette is to use the disk support program known as the 'DOS

WEDGE'. With this program in place, a program may be both

loaded into memory and started by entering the command

't f i l e n a m e '.

The standard 'WEDGE' program for PET/CBM machines will

work with KMMM Pascal, therefore the distribution diskette

for these systems does NOT contain a 'WEDGE' program.

A special version of the 'WEDGE' IS supplied as part of

the version of KMMM Pascal for the Commodore 64.

The first file on the distribution diskette, when loaded

into memory and run, will cause one of three disk support

routines to be loaded into memory. All three function

identically, but the one named 'CBMWEDGE' is for use with the

Commodore 1541 serial disk drive, the one named 'CIESUPP' is

for use with the IEEE adaptor from Micro Systems Devices

(CIE) and the one named 'BOTHSUPP' is for users who have a

1541, but use the CIE adaptor to drive an IEEE printer.

To install the proper disk support routine, simply enter

LOADING PROGRAMS

-1- APPENDIX A

’LOAD "BOOT",8'. If you are using the CIE adaptor with an

IEEE disk unit, you must first enter 'SYS57278' to allow the

'LOAD' to function. If you are using the CIE adaptor with a

1541 disk unit, do NOT use the 'SYS57278' at this point.

After the 'LOAD' is complete, enter 'RUN'. Respond with a

'Y' to the 'CIE IEEE ADAPTOR? 1 prompt only if you have a

1541, but wish to use the CIE for an IEEE printer.

Once the disk support routine is activated, the

component programs of KMMM Pascal can be loaded into memory

and run by simply entering the up arrow character followed by

the program name. It is not necessary to enclose the program

name in quotes.

A display of the directory of a diskette can be obtained

by entering '@ $ *.

CIE users may enter '@ x ', where x is the British pound

symbol key, as a substitute for 'SYS57278', after the

'CIESUPP' has been installed.

-2- APPENDIX A

If a null file name is entered, the system will default

to cassette drive 1. If opening an input file, the first

file found will become the file read. If opening an output

file, the file will be written without a name.

A unit designator must be part of the file name when

opening either a cassette input file, a cassette output file

or a disk output file. A unit designator consists of a

single character followed by a colon. For a disk file, the

single character is either *0' or '1'; for a cassette file,

the single character is either 1T * (first cassette drive) or

'U' (second casette drive).

If a unit designator does not preceed the file name when

opening an input file, the system will assume that a disk

drive is to be used and search the directories of both drives

for the specified file name. A unit designator (either '0:'

or * 1: *) may be used to limit the directory search to a

siingle drive. The use of the unit designators * T : f (first

cassette drive) or * U :* (second drive) when opening an input

file will cause a file to be read from either cassette drive.

If the file name consists of only the unit designator, the

first file found will become the file read.

When opening an output file, the file name must begin

with a unit designator. Since a cassette file may be created

without a name, a unit designator alone (’T:* or ’U:') is

sufficient for a cassette output file name. The disk unit

designators ('0:' or * 1: *) must be followed by at least one

c h a r a c t e r .

FILE NAME SYNTAX

APPENDIX B

RESERVED WORDS

STANDARD PASCAL

AND END NIL

ARRAY FILE NOT

BEGIN FOR OF

CASE FUNCTION OR

CONST GOTO * PACKED

DIV IF PROCEDURE

DO IN PROGRAM

DOWNTO LABEL RECORD

ELSE MOD REPEAT

KMMM PASCAL

CALL MEM SHL

* Not implemented in current version of KMMM Pascal

SET *

THEN

TO

TYPE

UNTIL

VAR

WHILE

WITH *

SHR

APPENDIX

STANDARD PASCAL

PRE-DEFINED IDENTIFIERS

CONSTANTS:
FALSE

TYPES:
BOOLEAN
CHAR

FUNCTIONS:
ABS
ARCTAN
CHR
COS
EOF

PROCEDURES:
GET
NEW
PACK *

FILES:
INPUT

TRUE

INTEGER

EOLN
EXP
LN
ODD
ORD

PAGE *
PUT
READ

MAXINT

REAL

PRED
ROUND
SIN
SQR
SQRT

READLN
RESET
REWRITE

OUTPUT

* Not implemented in current version of KMMM Pascal

KMMM PASCAL

TYPE:
STRING

FUNCTIONS:
MIDSTR
NOTB
ORB
POS

EXIT

ANDB
CONCAT
COPY
DELETE

PROCEDURES:
CLOSE

GETKEY
INKEY
LEFTSTR
LENGTH

ERASE

TEXT

SUCC
TRUNC

UNPACK *
WRITE
WRITELN

RIGHTSTR
RND

RENAME

APPENDIX D

BIBLIOGRAPHY

Cooper, Doug, STANDARD PASCAL USER REFERENCE MANUAL, W. W.
Norton, 1983

Grogono, Peter, PROGRAMMING IN PASCAL, A d d i s o n - W e s l e y , 1978

Jensen, Kathleen and Wirth, Niklaus, PASCAL USER MANUAL AND
REPORT, S p r i n g e r - V e r l a g , New York, 1974

Kusche, Willi, ZOOM PASCAL, Abacus Software, Grand Rapids,
1983

Ledgard, H., Hueras, J. and Nagin, P., PASCAL WITH STYLE,
Hayden, 1979

Welsh, Jim and Elder, John, INTRODUCTION TO PASCAL,
P r e n t i c e - H a l l , 1979

Wirth, Niklaus, ALGORITHMS + DATA STRUCTURES = PROGRAMS.,
Prentice-Hall, 1976

Y u e , Herbert and Chung, Kin-Man, "A Tiny Pascal Compiler",
BYTE Magazine, September-November 1978

Zaks, Rodnay, AN INTRODUCTION TO PASCAL, Zybex, 1980

THE JOURNAL OF STRUCTURED LANGUAGES, West Publishing
(p e r i o d i c a l)

BIBLIOGRAPHY

