Kick Assembler

Reference M anual

By Mads Nielsen

Table of Contents

O [gL oo (01T o o H PSP SPPPTTRN 1
2. GEIING SEBITEAeeveieeeete ettt ettt ettt et et ettt et et e enaa s 2
2.1 RUNNING the ASSEMDIEeeiei e e ettt e et e e e et e e e enaaeeees 2
2.2, AN EXAMPIE INEEITUDE ... ettt ettt e et e et et eeeebaes 2
2.3. Configuring the ASSEMDIEY ... e e 3
3. Basic Assembler FUNCHONEIITYcoouuuiiiiiiie e et e et e e e et e eeena e eenes 4
3L IMINEITIONICS .ttt ettt ettt ettt ettt ettt ettt ettt e e ettt e et e e et e e et e a e e nna e e nnans 4
I N (01U 0= 0| Y o= PP 6
3.3 INUMDEE TOMMELS ...ttt ettt e et e et e e et e e e e et e e e e eaa s 7
3.4. Labels, Arguments Labels and Multi LabelScoouiiiiiiiiii e 7
3.5, MEMOIY DITECHIVES ... ittt ettt et e et e et e e e eaa s 8
3.6, DAB DITECHIVES ...ttt ettt ettt ettt et e e e e e enaas 10
I R = 0olo o [oo U PP PPT P PUPPRTPRPPPPTN 10
3.8. IMPOItiNG SOUIMCE COUReeieieeiiii ettt ettt ettt ettt e e et ettt e e e e et e e ennans 11
3.9, IMPOITING GAEA ... eevte ettt ettt e e et e et e e et et e e e e et eeeene s 11
.10, COMIMENESeetet ettt ettt et et et e e et et e et r et e e e et e e e e e et e e e 12
311, CONSOIE OULPUL ...eevteeeeeit e ettt e ettt e ettt e et et e ettt e e et et e et e et e e et et e e et st e e e enbaes 12
4. Introducing the SCriPt LANQUETEuueeertieeeeiii ettt ettt et e et e et e e et e e et e e e eaa e e eenans 14
A1, EXPIESSIONS ...eeetieeteete ettt ettt ettt et et a et e e eaan s 14
4.2. Variables, Constants and User Defined LabelS ..., 14
IS oo o 1 1 O PO PP PPPPPTPR PPN 15
A4, NUMEITC VBIUBS ...ttt ettt ettt et e e e e e e ennas 16
A5, PaIENTNESES ...ttt enaas 17
A.6. SHNG VBIUBS ...ttt ettt e ettt e e et e e e b s 17
A7, Char VBIUES ... ettt ettt e e e e 19
4.8. The M@ LIDIarY ...ooeeneieiii ettt e e es 19
5. Branching @nt LOOPINGoeeeutueeeeiti ettt e et e ettt e ettt e e et et e e ettt e e e e st neeeesbnaeeeenbnaeeeentnneaees 22
5.1 BOOIEAN VEIUES ...ttt et eaaas 22
5.2, The Lif AIFECHIVE ...t ettt e s 23
5.3, QUESEION MAIK 1S ..t eaas 23
5.4, The FOr GIFECHIVE ...ttt ettt e e e e enaans 24
5.5. The WhIle QITECHIVEo e 24
5.6. Optimization Considerations When USING LOOPSuuiiiiiiiieiiiiiieeeii e e 25
6. DALA SITUCLUMNESee ettt e ettt e et e e et et et et et et e neennenne e 26
6.1, USer DEfINEO SIUCTUIES ...ttt 26
B.2. LIS VAIUES ...ttt ettt e 27
6.3. Working With MUtable VEIUESuuiiiiii e 28
B.4. Hashtahle VAIUEScooiiiiiiiii ettt 28
7. FUNCLIONS 8NGO IMBETOS ...ttt ettt e et e et et e e e et e e e era s 30
7.1 FUNCHIONS ...ttt ettt e ettt e et e et e et e e et e e b e et e na e e enaans 30
A Y=o o= S PP TUPTTRPRTPIN 30
7.3. PSRUAO COMIMENGS ...ttt ettt e et e e et e e e et e e e e aeeena s 31
8. PIEPIOCESSON ... eeieti ettt ettt et ettt e et 34
8.1. Defining PreproCeSSOr SYMDOIScieti ettt et e e et e e 34
8.2. Deciding What getS iNCIUAEAoouuniiiiiii e e e e e 34
8.3, IMPOITING FIIES ...t e et e e e e e s 35
8.4. List Of PreproCeSSOr QiFECHIVESceuveiiiiiii ettt e e e e e eeenes 35
8.5. BOOIEAN OPEIBIONS ... eieeii ettt ettt ettt e et et e e e e 36
9. SCOPES AN NAIMESPECES ...t eeeetii ettt ettt ettt et e et e ettt e et et e et e bt e e e e tb e e e era s 37
0.0, SCOPIES ..teeiet ettt ettt e et et 37
0.2, NAIMESPACESveeriie ettt ettt et e e et et ettt e e e e et n et et e e e e e e e e 37
9.3. SCOPING NIEIAICNYeeiiie ettt e e e e e e 38
9.4. The NamMeSPACE DIFECHIVESuuiieiiiiie ettt ettt e e 38
9.5. Escaping the CUrrent SCOPE OF NAMESPECEccuutueeeettnaeeettaeeeettaeeeent e eeert e aeeert e eeenenaaaeens 39
O.6. LADE] SCOPES ...ttt ettt e 40

Kick Assembler Manua

9.7. Accessing Local Labels of Macros and Pseudocommandsooovvveviiiiiiiieiiin e e 41

9.8. Accessing Local Labels of For / Whil€ l0OPScvvniiiiiciie e e 42

9.9. Accessing Local Labels Of 'S ..uuuiiin i 42

O B oo A= 1o I (0 43
10.1. Passing Command Line Arguments to the SCriptc.ooviiiiiiiiiic e 43

10.2. IMport Of BINAIY FIES ...oouiiii e e e e e e e e e aaa s 43

10.3. IMPOIt OF SID FIlES ..uuiiiii it e e e e e e e et e e aaaees 44

O A @ 01V = o (] To [= o ot 47

10.5. Writing t0 User DEfiNEA FIlESiiiii i 48

10.6. Exporting Labels to other SOUICEfIIESccovuiiii e 48

10.7. EXporting LabelS 10 VICEcouiiiiiiei et e e e e e e e e e e e e e e eeen 49

Y T T 1= £ PR 50
I O Vo o A B T =i /=N 50

12, SPECIAl FEALUINES . ..vuiiiii e e e e e e e e e e e et e e et e e et e e et e e et e e e e e et e e et e eanaeeees 51
12.1. Name and path of the SOUFCEFIIEciien e 51

12.2. BasSiC UPStart PrOgramcouu e e e e e e e e e e e e e e e et e et e e et e e aaneeeens 51

12.3. OPCOUE CONSEANES ...uietieiiieeeit et e e e e e e e e et e e et e e et e e et e e et e e et e e eta e ean e ean e eatneesenaaeens 51

12,4, COlOUN CONSLANES ...eeeettteeeeti e ee ettt s e e eeti e e e eett e e e eett e e e eett s e e eebtaeeeettaeeeettaeeeestnaeeeestnaeeeees 52

12.5. MaKing 3D CalCUIAtIONScvueiiiii e e e e e e e e e e e e e et e eea e eees 53

13, ASSEMDBIE INFOMMBIION ... i e e et e e et e e e et a e e e et neeesennas 56
13.1. The ASMINTO OPLION ..uiiiiiii e e e e e e e e et e e et e e et e e e et e e et e eaanaes 56

13.2. Realtime feedback from the assemblercoooiiiiiiiii 57

13.3. The ASMINFO fil€ FOMELiieiei e eaaens 57

B I g To I = o o PP 58
I 1o = == 1o PP 58

I B 1 (= o (A== = o 1o o PP 58

13.4.3. Preprocessor dir€CtVES SECHIONvvuuiiii i e e e e e e e e e e e e e et e e e eees 58

13.4.4, FIES SECHION ..ouuiieeiiiii et e et e et e e et s e e e et e e e e et aeeeabeaaeeees 58

T S Y = Q= 1 o S 59

134,68, EITOIS SECLIOMN ...vivtieeiiii e e et e e ettt e et e e e e e et e e e e et e e e e e et e e e e et e e e e et e eeeernnans 59

77 11 = 11 o PP 60
NS S (g To =T 0= 0] 60

14.2. ASSErtiNg €ITOIS IN EXPrESSIONS ...uivtueitt ettt ettt eett e sat e e st e e st e st eeaaeeataeetnaastnraranaerrnaeeees 60

I A== e oo Lo [60

14.4. ASSErtiNg €ITOrS IN COUE ...uuiiieeiiii e et et e e ean e eanaas 61

15. 3rd Party JAVa PIUGINSoveiiii e e e e e e e e e e e e e e e e aaa 62
T T 4 TC T 1= B 0= P 62

15.2. REGISLENING YOUI PIUGINS . ..uuiiiiciii e e e e e e e e e e e e e et e e et e e et e e eaneeeens 62

T /= o T = 0o 1 0 62

15.4. The IVAlUE INEEITACE ... i e et eeea s 63

15.5. The IENGINE INEEFACEiive e e e et e e e e e e eaaas 63

15.6. MOAITYEr PIUGINSiitiii e e e e e e e e e e e e et e e et e e e ean s 64

A = [0 1 I N o 1AY== 64

YN O U o Q== L= (= o= S 66
A.L Command LinNg OPLiONSccuuuiiiiiieiiiee e e e e e e e e e e e e e e e e et e e e raa s 66

A.2. PreproCeSSOr DIFBCHIVESivun it ci et e e et e e e e e e e e e e e et e e et e e et r e e et e e aaneeeens 67

A3, ASSEMDIEr DITECHIVES .. .iiiiiiieieiii ettt e e e e e et e e e et s e e e et e e e eren s 68
V= 0TI Y/ o= PP 70

2 = ot oo Tl B =] P 71
B.1. The flexible Parse AlQOrithmo e 71

B.2. Recording Of SIde EffECLSuiiiiiii i e 71

B.3. Function Mode and ASM MOOEcoeuuiiiiiiii it e e e e e e eeanns 71

B.4. Invalid Value CalCUIBLIONSuuieiiiiiieeeii e et e et e e et e e et eeeeaan s 71

C. GoiNg from VErsion 3.X 10 4.0 ...ouuuiiiiiiiii it e e e e e e e e r e aa 72
C.L. TRE NEW TEAIUIES ... o iiiiii et e e ettt e ettt e e ettt e e e e et reeeestnneeeeatnaeeeenes 72

OR B 11 (= 1= 1o =R LTS 01 73

C.3. DIfference in DENAVIONi it e s 74

C.4. CONVEITING 3. X SOUMCES ..uevtueeiuettteeeteeeteesttaestnesateeetnaestnaestteeateeataestnaestnaesrneeannaesnnns 74

Chapter 1
Introduction

Welcome to Kick Assembler, an advanced MOS 65xx assembler combined with a Java Script like script lan-
guage.

The assembler has all the features you would expect of a modern assembler like macros, illegal and DTV op-
codes and commands for unrolling loops. It also has features like pseudo commands, import of SID files, import
of standard graphic formats and support for 3rd party Java plugins. The script language makes it easy to gener-
ate data for your programs. This could be data such as sine waves, coordinates for a vector object, or graphic
converters. Writing small data generating programs directly in you assembler source code is much handier than
writing them in external languages like Java or C++.The script language and the assembler is integrated. Unlike
other solutions, where scripts are prepassed, the script code and the assembler directives works together giving
amore compl ete solution.

As seen by the size of this manual, Kick Assembler has alot of functionality. Y ou don't need to know it all to
use the assembler, and getting to know all the features may take some time. If you are new to Kick Assembler, a
good way to start is to read Chapter 2, Getting Sarted, Chapter 3, Basic Assembler Functionality and Chapter 4,
Introducing the Script Language and then supplement with the features you need. Also notice the quick reference
appendix which contains lists of directives, options and values.

If you are going from version 3.x to 4.x please check out the appendix regarding this subject.

Thisisthe fourth version of Kick Assembler. Thefirst version (1.x) was anormal 6510 cross assembler devel-
oped around 2003 and was never made public. The second version (2.x) was developed in 2006 and combined
the assembler with a script language, giving you the opportunity to write programs that generate data for the as-
sembler code. Finally in august 2006 the project went public. The third version (3.x) improved the underlying
assembling mechanism using a flexible pass algorithm, recording of side effects and handling of invalid values.
This gave better performance, and made it possible make more advanced feature. Thefourth version (4.x) replaced
the parsing mechanism, which where made using a parser generator, with a handwritten one which is faster, more
flexible and included a preprocessor. This made it possible to do new language constructs and have better error
handling. It also replaced the scoping system so it includes all entities, not just symbols. Through the years the
project have grown quite big, with a professional setup including aits own code repository, alarge automated test
suite and automatic building and deploying.

A lot of people have contributed with valuable comments and suggestions by mail and on CSDB. Thanks guys.
Y our feedback is greatly appreciated. Also thanks to Gerwin Klein for doing JFlex (the lexical analyser used for
this assembler); Scott Hudson, Frank Flannery and C. Scott Ananian for doing CUP (The parser generator). And
finaly, Thanks to XMLMind for sponsoring the project with a pro version of their XML editor in which this
manual is written.

| would like to hear from people that use Kick Assembler so do not hesitate to write your comments to
kickassembl er@no.spam.theweb.dk (<- Remove no.spam. for real address).

| wish you happy coding..

Chapter 2
Getting Started

This chapter is written to quickly get you started using Kick Assembler. The details of the assembler's func-
tionalities will be presented later.

2.1. Running the Assembler

Kick Assembler run on any platform with Java8.0 or higher installed. Java can be downloaded for free on
Javaswebsite (http://java.com/en/downl oad/index.jsp). To assembl e thefile myCode.asm simply go to acommand
prompt and write:

java —j ar ki ckass.jar myCode. asm

And that's it.

Having problems with Java? Some Windows users found that Java couldn't be reached from the command
prompt after installation. If thisis the case you have to insert it in your path environment variable. You can test
it by writing:

‘java —versi on

Javawill now display the Java version if it's correctly installed.

2.2. An Example Interrupt

Below isalittle sample program to quickly get you started using Kick Assembler. It sets up an interrupt, which
play some music. It shows you how to use non-standard features such as comments, how to use macros, how to
include external files and how to use the BasicUpstart2-macro which inserts abasic sys-lineto start your program.

This should be enough to get you (kick) started.

Basi cUpstart 2(start)

* = $4000 “Main Progrant
start: |da #300

sta $d020

sta $d021

| da #$00

jsr $1000 /] init music

| da #<irqgl
sta $0314
| da #>irql
sta $0315
| da #$7f
sta $dcod
sta $ddod
| da #$81
sta $d0la
| da #$1b
sta $d011
| da #$80
sta $d012
| da $dcod
| da $ddod

http://java.com/en/download/index.jsp

Getting Started

asl $d019
cli
jm *

irqgl: asl $d019
Set Bor der Col or (2)
jsr $1003 /1 play nusic
Set Bor der Col or (0)

jmp $ea8l
e e L

*=$1000 “Muisic”

.import binary “ode to 64.bin”
e e L

/1 Alittle macro

. macr o Set Bor der Col or (col or) {
| da #col or
sta $d020

2.3. Configuring the Assembler

Kick Assembler has a lot of command line options (a summary is given in Appendix A, Quick Reference).
For example, if you assemble your program with the —showmem option you will get a memorymap shown after
assembling:

java —j ar ki ckass.jar —shownrem nyCode. asm

By placing afile called KickAss.cfg in the same folder as the KickAssjar, you can set command line options
that are used at every assembling. Lets say you always wants to have shown a memorymap after assembling and
then have the result executed in the C64 emulator VICE. Then you write the following in the KickAss.cfg file:

- showrem
-execute “c:/c64/wi nvi ce/ x64. exe —confirnmexit”
This is a conment

(Replace c:/c64/winvice/ with a path that points to the vicefolder on your machine)
All lines starting with # are treated as comments.

Chapter 3
Basic Assembler Functionality

This chapter describes the mnemonics and the basic directives that are not related to the script language.

3.1. Mnemonics

In Kick Assembler you can write assembler mnemonics the traditional way:

| da #0
sta $d020
sta $d021

If you want to write several commands on one line then separate them with ; like this:

| da #0; sta $d020; sta $d021

Kick Assembler supports al opcodes, aso the illegal ones. A complete list of commands and their opcodes
in the each mode is shown here:

Table 3.1. Mnemonics

imm

adc $69 $65 $75 $61 $71 $6d $7d $79
ahx $93 $of
ar $4b
anc $0b
anc2 $2b
and $29 [$25 |$35 $21 |$31 |$2d |$3d [$39
arr $6b
ad $0a $06 $16 $0e $le

bce $90
bcs $b0
beq $f0
bit $24 $2c
bmi $30
bne $do
bpl $10
brk $00
bvc $50
bvs $70
clc $18
cld $d8
cli $58
clv $b8
cmp $c9
cpx $e0

$d5 $1 |$d1 ($cd [$dd |$d9

g g
g

Basic Assembler Functionality

imm
cpy $c0 ($c4 $cc
dcp $c7 |$d7 $c3 |$d3 | $cf $af $db
dec $c6 $d6 $ce $de
dex $ca
dey $88
eor $49 |$45 |$55 $41 |$51 |$4d |$5d |$59
inc $eb $6 $ee $fe
inx $e8
iny $c8
isc $e7 |$f7 $e3 %3 Pef $ff $tb
jmp $4c $6c
jsr $20
las $bb
lax $ab %7 $b7 |$a3 (b3 | % $bf
Ida $a9 |$a5 |05 $al |$bl |$ad $bd |$b9
ldx $a2 |$ab $b6 $ae $be
Idy $a0 ($a4 |$b4 $ac $bc
lsr $4a $46 |$56 $e |$5e
nop |$ea |$80 (304 |$14 $0c |$lc
ora $09 |$05 |$15 $01 |$11 |$0d |$1d |$19
pha |$48
php $08
pla $68
plp $28
rla $27 |$37 $23 |$33 | $2f $3f $3b
rol $2a $26 |$36 $2e [$3e
ror $6a $66 $76 $6e |$7e
rra $67 $77 $63 $73 $of $7f $7b
rti $40
rts $60
sax $87 $97 |$83 $8f
shc $e9 |$e5 S5 $el |$f1 $ed $fd $f9
shc2 $eb
sec $38
sed $8
sel $78
shx $9%e
shy $9c
so $07 |$17 $03 |$13 |$0Of $1f $1b
sre $47 |57 $43 |$53 | 4f $5f $5b
sta $85 $95 $81 $91 $8d $ad $99

Basic Assembler Functionality

noarg imm zp Zpx
stx $86 $96 $8e
sty $34 394 $8c
tas $9b
tax $aa
tay $a8
tsx $ba
txa $8a
txs $9a
tya $98
xaa $8b

DTV opcodes are also supported. To use these you have to use the —dtv option at the command line when
running Kick Assembler. The DTV commands are:

Table3.2. DTV Mnemonics

cnd noarg imm zp ZpX zpy

bra $12
sac $32

Sir $42

3.2. Argument Types

Kick Assembler uses the traditional notation for addressing modes/ argument types:

Table 3.3. Argument Types

Mode Example

No argument nop
Immediate Ida #$30
Zeropage Ida $30
Zeropage,x Ida $30,x
Zeropagey Idx $30,y
Indirect zeropage,x Ida ($30,x)
Indirect zeropagey Ida ($30),y
Abolute Ida $1000
Absolute,x Ida $1000,x
Absolutey Ida $1000,y
Indirect jmp ($1000)
Relative to program counter bne loop

An argument is converted to its zeropage mode if possible. This means that Ida $0030 will generate an Ida
command in its zeropage mode®

Y ou can force the assembler to use the absolute form of the mnemonic by appending .a or .abs. The same way
you can tell the assembler to use zeropage mode when it would otherwise use an absolute mode.

| da. abs $0040, x /1 Uses absol ute node
| da. a $0030, x /1 Same as abs (abbreviation)

4§ the argument is unknown (eg. an unresolved label) in the first pass, the assembler will assumeit'sa 16 bit value

Basic Assembler Functionality

stXx.zp zplLabel,y // Uses zeropage node
stx.z zpLabel ,y [/l Same as zp (abbreviation)
.l abel zpLabel = $10

jmp.z $1000 // Modifies nothing, jnp don't have any zp node

With the following extensions you can force specific modes. The are deprecated and only kept for backward
compatibility:

Table 3.4. Deprecated Mnemonic Extensions

Ext Mode Example
im, imm Immediate

Z,Zp Zeropage ldx.z $1234
ZX, ZpX Zeropage,x Ida.zpx table
zy, Zpy Zeropage,y

izX, izpx Indirect zeropage,x

izy, izpy Indirect zeropage,y

ax, absx Absolute,x Ida.absx $1234
ay, absy Absolute)y

l,ind Indirect jmp.i $1000
r,rel Relative to program counter

3.3. Number formats

Kick Assembler supports the standard number formats:

Table 3.5. Number formats

Prefix Format Example
Decimal Ida#42

$ Hexadecimal |da#$2a, |da #$ff

% Binary Ida #%101010

3.4. Labels, Arguments Labels and Multi Labels

Label declarations in Kick Assembler end with ‘:" and have no postfix when referred to, as shown in the
following program:

| oop: i nc $d020
inc $d021
jnp | oop

Y ou can put labelsin front of mnemonic arguments. This can be useful when creating self modifying code:

stx tnpX

I dx tmpX: #$00

Kick Assembler also supports multi labels, which are labels that can be declared more than once. These are
useful to prevent name conflicts between [abels. A multi label startswitha‘!” and when your referenceit you have
to end with a‘+' to refer to the next multi label or ‘*-* to refer to the previous multi label:

I dx #100
'l oop: inc $d020

Basic Assembler Functionality

dex
bne !l oop- // Junps to the previous instance of !l oop

| dx #100
!l oop: inc $d021
dex
bne !l oop- // Junps to the previous instance of !l oop

or

| dx #10

'l oop:
jmp '+ // Junps over the two next nops to the ! | abel
nop
nop

1. jmp '+ // Junps over the two next nops to the ! | abel
nop
nop

dex
bne !l oop- // Junps to the previous !l oop |abel

Another way to avoid conflicting variables is to use user defined scopes, which are explained in the scoping
section of Chapter 4, Introducing the Script Language.

A ‘*’ returns the value of the current memory location so instead of using labels you can write your jumps
like this:

/1 Junps with '*'

jm *

i nc $d020

inc $d021

jm *-6
/!l The sane junps with | abels
t hi s: jmp this

'l oop: inc $d020
inc $d021
jmp !l oop-

When referencing alabel that is not yet resolved, the assembler will assume atwo byte address, even though it
later isfound to be in the zeropage. Y ou can mark labels as being in the zeropage with the .zp directive:

/1 Uses zeropage formof |da and sta eventhough the | abels is first
/] resolved |ater

| da zpRegl

sta zpReg2

*=$10 vi rtual

.zp {
zpRegl: .byte O
zpReg2: .byte O

Note: Currently the .zp directive doesn't handle macros and pseudocommands called within the {}. Labels
inside these will bein the form defined in the macro.

3.5. Memory Directives

The* directiveis used to set the program counter. A program should always start with a* directive to tell the
assembl er where to put the output. Here are some examples of use:

Basic Assembler Functionality

*=$1000 " Progr ant

| dx #10

Il oop: dex
bne !l oop-
rts

*=$4000 " Data"
.byte 1,0,2,0,3,0,4,0

*=$5000 "Mbore data"
.text "Hello"

Note: The old notation (".pc=$1000") from Kick Assembler 2.x and 3.x is still supported.

The last argument is optional and is used to name the memory block created by the directive. When using the
‘-showmem’ option when running the assembler amemory map will be generated that displays the memory usage
and block names. The map of the above program looks like this:

$1000- $1005 Progr am
$4000- $4007 Dat a
$5000- $5004 More data

By using the virtual option on the .pc directive you can declare amemory block that isnot saved in the resulting
file.

*=$0400 "Data Tables 1" virtual
tablel: .fill $100,0
table2: .fill $100,0

*=$0400 "Data Tabl es 2" virtual
table3: .fill $150,0
table4: .fill $100,0

*=$1000 " Progrant
| dx #0
| da tabl el, x

Note that virtual memory blocks can overlap other memory blocks. They are marked with an asterisk in the
memory map.

*$0400- $05ff Data Tables 1
*$0400- $064f Data Tables 2
$1000- $1005 Pr ogram

Since virtual memory blocks aren’t saved, the above example will only save the memory from $1000 to $1005.

With the .align directive, you can align the program counter to a given interval. Thisis useful for optimizing
your code as crossing a memory page boundary yields a penalty of one cycle for memory referring commands.
To avoid this, use the .align command to align your tables:

*=$1000 " Progrant
| dx #1

| da dat a, x

rts

*=$10f f //Bad place for the data
.align $100 //Alignnent to the nearest page boundary saves a cycle
dat a: .byte 1,2,3,4,5,6,7,8

Basic Assembler Functionality

In case you want your code placed at position $1000 in the memory but want it assembled like it was placed
at $2000, you can use the .pseudopc directive:

*=$1000 "Program to be rel ocated at $2000"
. pseudopc $2000 {
| oop: i nc $d020
jnmp loop // WII produce jnp $2000 instead of jnp $1000

}

3.6. Data Directives

The .byte, .word, .dword and .text directives are used to generate byte, word (one word= two bytes), dword
(double word = 4 bytes) and text data asin standard 65xx assemblers.

.byte 1,2,3,4 /| Cenerates the bytes 1,2,3,4

.word $2000, $1234 // Cenerates the bytes $00, $20, $34, $12
.dword $12341234 // Cenerates the bytes $34, $12, $34, $12
.text "Hello World"

Y ou can use .by, .wo and .dw as aliases for .byte, .word and .dword, so '.by $10' is the same as '.byte $10'.

With the fill directive you can fill a section of the memory with bytes. It works like aloop and automatically
setsthe variable i to the byte number.

.fill 5, 0// GCenerates byte 0,0,0,0,0
fill 5, i // Generates byte 0,1,2,3,4
fill 256, 127.5 + 127.5*sin(toRadi ans(i *360/256)) // Generates a sine curve

3.7. Encoding

The .text directive outputs bytes to the memory that represents the given textstring. The default encoding is
'screencode_mixed', which maps to the screencode representations of the charset with both uppercase and lower-
case |etters. To change the encoding, use the .encoding directive:

/1 How to use encodi ng

.encodi ng "screencode_upper"

.text "THS 1S WRITTEN I N THE UPPERCASE SI NCE LONERCASE CHARS ARE USE FOR GFX
Sl G\S*

.encodi ng "screencode_ni xed"
.text "In this ENCODI NG we have both UPPER and | ower case chars.”
.text "Renmenber to swith to a charset that fits the encoding."

The encoding affects every operation that converts charactersin the sourcecode to byte values, for instance the
".import text' directive is also affected.

The supported encodings are:

Table 3.6. Encodings

Name Description

petscii_mixed The petscii representation of the charset with both upper
and lower case characters.

petscii_upper The petscii representation of the charset with upper case
and graphics characters.

screencode_mixed The screencode representation of petscii_mixed

screencode_upper The screencode representation of petscii_upper

10

Basic Assembler Functionality

3.8. Importing source code

Use the preprocessor to import other source files.

/1 lmport the file "nylibrary. asnf
#i nport "MyLibrary. asni

/1 Only inmport "UpstartCode.asm' if STAND ALONE is defined
#i nportif STAND_ALONE " Upst art Code. asni

Note that preprocessor commands starts with #. Refer to the chapter on the preprocessor for adetailed descrip-
tion.

When Kick Assembler searchesfor afile, it first ook in the current directory. Afterwardsit looksin the direc-
tories supplied by the‘-libdir’ parameter when running the assembler. This enablesyou to create standard libraries
for filesyou use in several different sources. A command line could look like this:

java —j ar kickass.jar myProgramasm —libdir ..\music —libdir c:\code\stdlib

If you build source code libraries you might want to ensure that the library is only included once in your code.
This can be done by placing a#importonce directive in the top of thelibrary file:

Filel. asm

#i npor t once

.print "This will only be printed once!"
File2. asm

#inmport "Filel.asm' // This will inmport Filel

#inmport "Filel.asm' // This will not inport anything

NOTE! The v3.x directives for importing source files using the import directive (.import source "myfile.asm"
and .importonce), not the preprocessor, is still supported. But its recommended to use the preprocessor directives,
sincethey will give amore natural order of evaluation. Using the preprocessor will import the source at once while
using the old import directive will first parse the entire file, and then import external files during evaluation.

3.9. Importing data

With the .import directive you can import data from external filesinto your code. Y ou can import binary, C64,
and text files:

/! inport the bytes fromthe file 'nusic.bin'
.import binary "Misic. bin"

/1 Inport the bytes fromthe c64 file 'charset.c64
/1 (Same as binary but skips the first two address bytes)
.import c64 "charset.c64"

/! Inport the chars fromthe text file
/1l (Converts the bytes as a .text directive would do)
.inmport text "scroll.txt"

The binary, c64 and text import takes an offset and a length as optional parameters:

/1 import the bytes fromthe file '"nmusic.bin', but skip the first 100 bytes
.inmport binary "Misic.bin", 100

/1 Inports $200 bytes starting fromposition $402 (the two extra bytes is because
its a c64 file)
.inmport c64 "charset.c64", $400, $200

Aswhen importing sourcesfiles, theimport directive also searches the folders given by theibdir option when
looking for afile.

11

Basic Assembler Functionality

3.10. Comments

Comments are pieces of the program that areignored by the assembler. Kick Assembler supportsline and block
comments known from languages such as C++ and Java. When the assembler sees*//’ it ignores the rest of that
line. C block comments ignores everything between /* and */.

| da #10

sta $d020 // This is also a coment

sta /* Comments can be placed anywhere */ $d021
rts

Traditional 65xx assembler line comments (;) are not supported since the semicolon is used in for-loopsin the
script language.

3.11. Console Output

With the .print directive you can output text to the user while assembling. For example:

.print "Hello world"
.var x=2
.print "x="+x

Thiswill give the following output from the assembler:

par si ng

flex pass 1

Qut put pass
Hell o worl d
x=2.0

Noticethat the output is given during the output pass. Y ou can al so print the output immediately with the .print-
now command. Thisisuseful for debugging script where errors prevent the execution of the output pass. The..print-
now command will print the output in each pass, and in some passes the output might be incomplete due to lack
of information. In the following example we print alabel that isn't resolved in the first pass:

.printnow "l oop=$" + toHexString(l oop)

*=$1000
| oop: jnmp | oop

Thiswill give the following output:

par si ng
flex pass 1
| oop=$<<Invalid String>>
flex pass 2
| 0op=$1000
Cut put pass

If you detect an error while assembling, you can usethe .error directive to terminate the assembling and display
an error message:

.var width = 45
.if (wWdth>40) .error "width can’t be higher than 40"

Another way of writing thisisto use the .errorif directive that takes a boolean expression and a message text.
An error israised if the boolean expression is evaluated to true:

12

Basic Assembler Functionality

.var width = 45
.errorif with>40, "width can’t be higher than 40"

This is more flexible since it standard .if's has to be decided in the first pass which will give an (unwanted)
error if you for example compare not yet resolved labels. If you for instance want to check for a page boundary
crossing you can do like this:

beq | abel 1
.errorif (>*) != (>l abell), "Page crossed!"
nop
nop
| abel 1:

13

Chapter 4
Introducing the Script Language

In this chapter the basics of the script language isintroduced. We will focus on how Kick Assembler evaluates
expressions, the standard values and libraries. Later chapters will deal with more advanced areas.

4.1. Expressions

Kick assembler has a built in mechanism for evaluating expressions. An example of an expression is 25+2* 3/
X. Expressions can be used in many different contexts, for example to calculate the value of avariable or to define
abyte:

| da #25+2*3/ x
. byte 25+2*3/ x

Standard assemblers can only calculate expressions based on numbers, while Kick Assembler can evaluate
expressions based on many different types like: Numbers, Booleans, Strings, Lists, Vectors, and Matrixes. So, if
you want to calculate an argument based on the second value in alist you write:

| da #35+nmyList.get(1) // 1 because first elenment is nunber O

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

| da #35+myVect or. get X()

Or perhaps on the basis of the x-coordinate on the third vector in alist:

| da #35+myVect or Li st. get (2) . get X()

| think you get the idea by now. Kick Assembler's evaluation mechanism is much like those in modern pro-
gramming languages. It has a kind of object oriented approach, so calling a function on a value(/object) executes
afunction specially connected to the value. Operators like +, -,*, /, ==, I=, etc., are seen as functions and are also
specially defined for each type of value.

In the following chapters, adetailed description of how to use the value types and functionsin Kick Assembler
will be presented.

4.2. Variables, Constants and User Defined Labels

With variables you can store data for later use. Before you can use a variable you have to declare it. You do
thiswith the .var directive:

.var x=25
| da #x // Gves |da #25

If you want to change x later on you write:

.eval x=x+10
| da #x // Gves |da #35

Thiswill increase x by 10. The .eval directive is used to make Kick Assembler evaluate expressions. In fact,
the .var directive above is just a convenient shorthand of ‘.eval var x =25, where ‘var’ is subexpression that
declares avariable (thiswill come in handy later when we want to define variablesin for-loops).

Other shorthands exist. The operators ++, --, +=, -=, *= and /= will automatically call a referenced variable
with +1,-1, +y, -y, *y and /y. For example:

14

Introducing the Script Language

.var x = 0

.eval x++ /] Gves x=x+1
.eval x-- /] Gves x=x-1
.eval x+=3 /] Gves x=x+3
.eval x-=7 /] Gves x=x-7
.eval x*=3 /] Gves x=x*3
.eval x/=2 /] Gves x=x/2

Experienced users of modern programming languages will know that assignments return avalue, e.g. X =y =
z = 25 first assigns 25 to z, which returns 25 that is assigned to y, which returns 25 that is assigned to x. Kick
Assembler supports this aswell. Notice that the ++ and -- works as real ++ and — postfix operators, which means
that they return the original value and not the new (Ex: .eval x=0 .eval y=x++, will set x to 1 and y to 0)

Y ou can a'so declare constants:

.const c=1 /| Declares the constant ¢ to be 1
.const name = "Canelot" // Constants can assune any val ue, for exanple string

A constant can't be assigned a new value, so .eval pi=22 will generate an error. Note that not all values are
immutable. If you define a constant that pointsto alist, the content of thelist can still change. If you want to make
amutable value immutable, you can use its lock() function, which will lock it's content:

.const i mmutabl eLi st = List().add(1, 2, 3).1ock()

After thisyou will get an error if you try to add an element or modify existing elements.
With the .enum statement you can define enumerations, which are series of constants:

.enum {si ngl eCol or, multi Col or} /1 Defines singleColor=0, nultiCol or=1

.enum {effect1=1, effect 2=2, end=$ff} // Assigns values explicitly

.enum {up, down, [eft, right, none=$ff} // You can mix inplicit and explicit
/1 assignment of val ues

Variables and constants can only be seen after they are declared while labels can be seen in the entire scope.
Y ou can define alabel with the .|abel directive like you define variables and constants:

/1 This fails
inc nmyLabel 1
.const nyLabel 1 = $d020

/1 This is ok
inc myLabel 2
.l abel nyLabel 2 = $d020

4.3. Scoping

You can limit the scope of your variables and labels by defining a user defined scope. Thisis done by {..}.
Everything between the bracketsis defined in alocal scope and can't be seen from the outside.

Functionl: {
.var length = 10
| dx #0
| da #0
| oop: sta tablel, x
i nx
cpx #l ength
bne | oop

}

Function2: {
.var length = 20 // doesn’t collide with the previous ‘Ilength

15

Introducing the Script Language

| dx #0
| da #0
| oop: sta tabl e2, x /1 the | abel doesn’t collide with the previous ‘I oop
i nx
cpx #l ength
bne | oop

Scopes can be nested as many times as you wish as demonstrated by the following program:

.var x = 10

{
.var x=20
{
.print "X in 2nd | evel scope read from3rd | evel scope is " + X
.var x=30
.print "X in 3rd level scope is " + X
}
.print "X in 2nd | evel scope is " + X
}

.print "X in first level scope is " + X

The output of thisis:

Xin 2nd | evel scope read from3rd | evel scope is 20.0
X in 3rd | evel scope is 30.0

X in 2nd | evel scope is 20.0

Xin first level scope is 10.0

4.4. Numeric Values

Numeric values are numbers, covering both integers and floats. Standard numerical operators(+,-,*, and/) work
as in standard programming languages. Y ou can combine them with each other and they will obey the standard
precedence rules. Here are some examples:

25+3
5+2. 5*3-10/ 2
charmem + y * $100

In practical use they can look likethis:

.var charnmem = $0400
| dx #0
| da #0

| oop: sta charnmem + 0*$100, x
sta charnmem + 1*$100, x
sta charnmem + 2*$100, x
sta charnmem + 3*$100, x
i nx
bne | oop

Y ou can a'so use bitwise operators to perform and, or, exclusive or, and bit shifting operations.

.var x=$12345678
.word x & $00ff, [x>>16] & $00ff // gives .word $0078, $0034

Specia for 65xx assemblers are the high and low-byte operators (>,<) that are typically used like this:

lda #<interruptl // Takes the |owbyte of the interuptl val ue
sta $0314

lda #>interruptl // Takes the high byte of the interuptl val ue
sta $0315

16

Introducing the Script Language

Table4.1. Numeric Values

Name Operator Examples Description

Unary minus - Inverts the sign of a num-
ber.

Plus + 10+2=12 Adds two numbers.

Minus - 10-8=2 Subtracts two numbers.

Multiply * 2*3=6 Multiply two numbers.

Divide / 10/2=5 Divides two numbers.

High byte > >$1020 = $10 Returns the second byte of
anumber.

Low byte < <$1020 = $20 Returns the first byte of a
number.

Bitshift left << 2<<2=8 Shifts the bits by a giv-
en number of spaces to the
| eft.

Bitshift right >> 2>>1=1 Shifts the bits by a giv-
en number of spaces to the
right.

Bitwise and & $3f & $Of = $f Performs bitwise and be-
tween two numbers.

Bitwise or | $Of | $30 = $3f Performs a bitwise or be-
tween two numbers.

Bitwise eor A $ff ~ $fO = $Of Performs a bitwise exclu-
sive or between two num-
bers.

Y ou can get the number representation of an arbitrary value by using the general .number() function. Eg.

.print ‘x’.nunber()

4.5. Parentheses

Y ou can use both soft parentheses () and har parentheses[] to tell the order of evaluation.

| da #2+5*2 /1 gives |lda #12
| da #(2+5)*2 // gives |da #14
| da #[2+5]*2 // gives |da #14

Note that 65xx assemblers use soft parenthesis to signal an indirect addressing mode:

j mp ($1000) I/l Creates a jnp indirect command
jmp [$1000] I/l Creates a jnp absol ute command

Y ou can nest as many parentheses as you want, so (([((2+4))])*3)+25.5isalegal expression.

4.6. String Values

Strings are used to contain text. Y ou can define astring like this:

.var nessage = "Hello Worl d"
.text nessage /I Gves .text "Hello world"

17

Introducing the Script Language

Normally quotes (") will denote the end or start of the string. Y ou can use the quote as a character in the string
by adding a backslash in front of the quote:

.text “He said: \"Hello World\""

Every object has a string representation and you can concatenate strings with the + operator. For example:

.var x=25
.var nmyString= “Xis “ + X /'l Gves nyString = "X is 25"

Y ou can usethe .print directiveto print astring to the console while assembling. Thisisuseful when debugging.
Printing x and y can be done like this:

.print "x="+x
.print "y="+y

You can also print labels to see which location they refer to. If you do this, it's best to convert the label value
to hexadecimal notation first:

.print “int1=$"+toHexString(int1l)

intl: sta regA+l
StXx regX+l
sty regY+1
I sr $d019
/'l Etc.

Hereisalist of functions/operators defined on strings:

Table4.2. String Values

Function/Operator Description

+ Appends two strings.

asBoolean() Converts the string to a boolean vaue (eg,
“true’ .asBoolean()).

asNumber() Convertsthe string to anumber value. EX, “ 35" .asNum-
ber().

asNumber(radix) Converts the string to a number value with the

given radix (16=hexadecimal, 2=binary etc). EX,
“f” asNumber(16) will return 15.

charAt(n) Returns the character at position n.

size() Returns the number of charactersin the string.

substring(il,i2) Returns the substring beginning at i1 and ending at i2
(char at i2 not included).

toL owerCase() Return the lower version of the string.

toUpperCase() Return the uppercase version of the string.

Here are the functions that take a number value and convert it to a string:

Table 4.3. Numbersto Strings

Function Description
tolntString(x) Return x as an integer string (eg x=16.0 will return
“ 16))).

18

Introducing the Script Language

Function Description

tolntString(x,minSize) Return x as an integer string space-padded to reach the
given minsize. (eg tolntString(16,5) will return “ 16”).

toBinaryString(x) Return x as a binary string (eg x=16.0 will return
“10000").

toBinaryString(x,minSize) Return x as a binary string zero-padded to reach the
given minSize (eg toBinaryString(16,8) will return
“00010000").

toOctal String(x) Return x as an octal string (eg x=16.0 will return “20").

toOctal String(x,minSize) Return x as an octal string zero-padded to reach the
given minSize (eg toBinaryString(16,4) will return
13 0020”)-

toHexString(x) Return x as a hexadecimal string (eg x=16.0 will return
“107).

toHexString(x,minSize) Return x as an hexadecimal string zero-padded to reach
the given minSize (eg toBinaryString(16,4) will return
“0010").

Y ou can get the string representation of an arbitrary value by using the general .string() function. Eg.

.print 1234.string().charAt(2) /1l Prints 3

4.7. Char Values

Char values, or characters, are used like this:

lda # H
sta $0400
lda #i'
sta $0401

| da #"?!#".char At (1)
sta $0402

.byte "H,'e ,"I","I',"0","
Jtext "World'+ 1!

In the above example, chars are used in two ways. In the first examples their numeric representation are used
as arguments to the Ida commands and in the final example, '!'s string representation is appended to the "World"
string.

Char values is a subclass of nhumber values, which means that it has all the functions that are placed on the
number values, so you can do stuff like.

lda # H+1 // Sane as lda #' |’

sta $0400
lda # A +1 // Sane as |lda # B
sta $0401
lda # L +1 // Sane as lda # M
sta $0402

4.8. The Math Library

Kick Assembler's math library is built upon the Java math library. This means that nearly every constant and
command in Java'smath library isavailablein Kick Assembler. Hereisalist of available constants and commands.
For further explanation consult the Java documentation at Suns homepage. The only non Javamath library function
is mod (modulo).

19

Introducing the Script Language

Table4.4. Math Constants

Constant Value

PI

3.141592653589793

E

2.718281828459045

Table4.5. Math Functions

Function Description

abs(x) Returns the absol ute (positive) value of x.

acos(x) Returns the arc cosine of x.

asin(x) Returnsthe arc sine of x.

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the
positive x-axis. Useful when converting to polar coor-
dinates.

cbrt(x) Returns the cube root of x.

ceil(x) Rounds up to the nearest integer.

cos(r) Returnsthe cosine of r.

cosh(x) Returns the hyperbolic cosine of r.

exp(x) Returns ex.

expml(x) Returns ex-1.

floor(x) Rounds down to the nearest integer.

hypot(a,b) Returns sqrt(x2+y?2).

| EEEremainder(x,y) Returns the remainder of the two numbers as described
in the IEEE 754 standard.

log(x) Returns the natural logarithm of x.

10g10(x) Returns the base 10 logarithm of x.

loglp(x) Returnslog(x+1).

max(X,y) Returns the highest number of x andy.

min(x,y) Returns the smallest number of x and y.

mod(a,b) Converts a and b to integers and returns the remainder
of alb.

pow(X,y) Returns x raised to the power of y.

random() Returns arandom number x where 0 < x < 1.

round(x) Rounds x to the nearest integer.

signum(x) Returns 1 if x>0, -1 if x<0 and O if x=0.

sin(r) Returnsthe sine of r.

sinh(x) Returns the hyperbolic sine of x.

sgrt(x) Returns the square root of x.

tan(r) Returns the tangent of r.

tanh(x) Returns the hyperbolic tangent of x.

toDegrees(r) Converts aradian angle to degrees.

toRadians(d) Converts a degree angle to radians.

Here are some examples of use.

Introducing the Script Language

// Load a with a random nunber
| da #randon{) * 256

// Cenerate a sine curve
.fill 256, round(127.5+127. 5*si n(t oRadi ans(i *360/ 256)))

21

Chapter 5
Branching and Looping

Kick Assembler has control directives that let you put conditions on when a directive is executed and how
many timeit is executed. These are explained in this chapter.

5.1. Boolean Values

The conditions for control directives are given by Boolean values, which are values that can be true or false.
They are generated and used as in programming languages like Java and C#. The following are examples of
boolean variables:

.var nyBool eanl = true /1 Set the variable to true

.var mnyBool ean2 = fal se /1 Set the variable to false

.var fourH gherThanFive = 4>5 // Sets fourHi gher ThanFi ve = fal se
.var aEqual sB = a==b /'l Sets true if ais the same as b

.var xNot10 = x!=10 /1l Sets true if x doesn’t equal 10

Here is the standard set of operators for generating Booleans:

Table 5.1. Boolean generating Functions

Name Operator Example Description

Equal == a==b Returns true if a equals b,
otherwise false.

Not Equal I= al=b Returns true if a doesn't
equal b, otherwise false.

Greater > a>b Returns true if ais greater
than b, otherwise false.

Less < a<b Returnstrueif aislessthan
b, otherwise false.

Greater than >= a>=b Returns true if ais greater
than or equa to b, other-
wisefalse.

Lessthan <= a<=b Returns true if ais less or

equal to b, otherwise false.

All the operators are defined for numeric values, other values have defined a subset of the above. E.g. you can't
say that one boolean is greater than another, but you can seeif they have the same values:

true==true // Sets bl to true
true! =(10<20) // Sets b2 to fal se

.var bl
.var b2

Boolean values have a set of operators assigned. These are the following:

Table5.2. Boolean Operators

Name Operator Example Description

Not ! la Returns true if a is fase,
otherwise false.

And && a& &b Returns true if aand b are
true, otherwise false.

22

Branching and Looping

Operator Description

Or Il Alb Returns true if a or b are
true, otherwise false.

And are used like this:

.var allTrue = 10H gher Than100 && aEqual sB // Is true if the two bool ean
/] argunments are true

Like in languages like C++ or Java, the && and || operators are short circuited. This means that if the first
argument of an && operator is false, then the second argument won't be evaluated since the result can only be
false. The same happensiif the first argument of an || operator is true.

5.2. The .if directive

If-directives work like in standard programming languages. With an .if directive you have the proceeding di-
rective executed only if a given boolean expression is evaluated to true. Here are some examples:

/Il Set x to 10 if x is higher that 10
.if (x>10) .eval x=10

/Il Only show rastertine if the ‘showRasterTi me’ boolean is true
.var showRasterTi me = fal se

.if (showRasterTi ne) inc $d020

jsr PlayMisic

.if (showRasterTi ne) dec $d020

Y ou can group several statementstogether inablock with{...} and have them executed together if the boolean
expression istrue:

/1 1f IrgNr is 3 then play the nusic
0 f (irgNr==3) {

i nc $d020

jsr music+3

dec $d020

By adding an el se statement you can have an expression executed if the boolean expression isfalse:

/! Add the x'th entry of a table if x is positive or
// subtract it if x is negative
.if (x>=0) adc zpXtabl e+x el se shc zpXt abl e+abs(x)

/1 Init an offset table or display a warning if the table length is exceeded
.if (i<tableLength) {
| da #0
sta of fset 1+
sta of fset 2+
} else {
.error "Error!! | is too high!"
}

5.3. Question mark if's

Asknown from languageslike Javaand C++ you can use the write compact if expression in thefollowing form:

condition ? trueExpr : fal seExpr

Some examples of use:

23

Branching and Looping

.var x=true ? "hello" : "goodbye" [/l Sets x = "hell 0"
.var y= [20<10] ? 1 : 2 /] Sets y=2

.var max = a>b ? a:b

.var debug=true
i nc debug ? $d020: $d013 // Increases $d020 si nce debug=true

.var bool ean = max(x, m nLim t==nul | ?0: m nLimt) // Takes care of null limt

5.4. The for directive

With the .for directive you can generate loops as in modern programming languages. The .for directive takes
aninit expression list, aboolean expression, and an iteration list separated by a semicolon. The last two arguments
and the body are executed as long as the boolean expression evaluatesto true.

/1 Prints the nunbers fromO to 9
.for(var i=0;i<10;i++) .print "Number " +

/1l Make data for a sine wave
.for(var i=0;i<256;i++) .byte round(127.5+127.5*si n(toRadi ans(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions separated by
comma:

[/ Print the nunbers fromO to 9

.var i=0

for (;i<10;) {
. print
.eval i++

}

/1 Sum the nunmbers fromO to 9 and print the sumat each step
.for(var i=0, var sun¥0;i <10; sunFsumti, i ++)
.print “The sumat step “ + 1 “ is “ + sum

With the for loop you can quickly generate tables and unroll loops. Y ou can, for example, do aclassic ‘blitter
fill’ routine like this:

.var blitterBuffer=%$3000
.var charset =$3800
.for (x=0; x<16; x++) {
.for(var y=0;y<128; y++) {
if (var y=0) |Ida blitterBuffer+x*128+y
el se eor blitterBuffer+x*128+y
sta charset +x*128+y

5.5. The .while directive

The .whiledirective executes aslong asagiven expressionsistrue. That is, it workslike a.for-loop but without
theinit and iteration parameters:

/!l Print the nunbers fromO to 9

.var i=0

.whil e(i<10) {
.print i;
.eval i++;

}

24

Branching and Looping

5.6. Optimization Considerations when using Loops

Hereisatipif you want to optimize your assembling. Kick assembler has two modes of executing directives.
‘Function Mode' isused whenthedirectiveisplacedinsideafunction or definedirective, otherwise* AsmMode' is
used. ‘ Function Mode' isexecuted fast but isrestricted to script commandsonly (.var, .congt, .for, etc.), while* Asm
Mode' remembers intermediate results so the assembler won't have to make the same calculations in succeeding
passes.

If you make heavy calculations and get slow performance or lack of memory, then place your for loopsinside
a define directive or inside a function. No time or memory will be wasted to record intermediate results, and the
define directive or the directive that called the function, will remember the result in the succeeding passes.

Read more about the define directive in the section ‘*Working with mutable values'.

25

Chapter 6
Data Structures

In the chapter, we will examine user defined data and predefined structures.

6.1. User Defined Structures

It's possible to define your own structures. A structureis a collection of variables like for example a point that
consist of an x and ay coordinate:

/! Define a point structure
.struct Point {x,y}

/|l Create a point with x=1 and y=2 and print it
.var pl = Point(1,2)
.print "pl.x=" + pl.x
.print "pl.y=" + pl.y

/!l Create a point with the default contructor and nodify its argunents
.var p2 = Point()

.eval p2.x =3

.eval p2.y =4

Y ou define a structure with the .struct directive. The above structure has the name ‘Point’ and consists of the
variables x and y. To create an instance of the structure, you use its name as a function. You can either supply
no arguments or give the init values of al the variables. Y ou use the values generated by structures as any other
variables, ex:

| da #0
I dy #pl.y
sta charset +(pl. x>>3) *hei ght , y

Y ou can get access to informations about the struct and access the fields in a more generic way by using the
struct’ s functions:

.struct Person{firstNane, | ast Nane}
.var pl = Person(“Peter”,”Schnei chel ")

.print pl.getStructNane() /1 Prints ‘Person’

.print pl.get NoO Fiel ds() /[l Prints ‘2

.print pl.getFieldNanmes().get(0) // Prints ‘firstNanme’

.eval pl.set(0,"Kasper”) /1 Sets firstNane to Kasper
.print pl.get(“lastNane") /1 Prints “Schrei chel”

/1 Copy val ues fromone struct to anot her

.var p2 = Person()

.for (var i=0; i<pl.getNoOfFields(); i++)
.eval p2.set(i,pl.get(i))

// Print the content of a struct:
/1 firstNane = Casper

/1 | ast Nane = Schnei chel
.for (var i=0; i<pl.getNoCOFFields(); i++) {

.print pl.getFieldNanmes().get(i) + “ =*“ + pl.get(i)
}

Hereisalist of the functions defined on struct values:

26

Data Structures

Table6.1. Struct Value Functions

Functions Description

getStructName() Returns the name of the structure.

getNoOfFields() Returns the number of defined fields.

getFieldNames() Returns alist containing the field names.

get(index) Returns the field value of the field given by an integer
index (0 isthefirst defined filed).

get(name) Returns the value of the field given by a field name
string.

set(index,value) Sets the value of afield given by an integer index..

set(name,value) Sets the value of afield given by aname.

6.2. List Values

List values are used to hold alist of other values. To create a list you use the ‘List()’ function. It takes one
argument that tells how many elementsit contains. If it is left out, the created list will be empty. Use the get and
set operationsto retrieve and set elements.

.var myList = List(2)

.eval nylList.set (0, 25)

.eval nyList.set(1, "Hello world")

. byte nylLi st. get (0) [l WIIl give .byte 25

.text nyList.get(1) [l WIIl give .text "Hello world"

Y ou can determine the number of e ementsin alist with the size-function and the add-function adds additional
elements.

.var greetingsList = List()
.eval greetingsList.add("Fairlight", "Booze Design", "etc.")
.byte listSize = greetingsList.size() /] gives .byte 3

A compact way to fill alist with elementsis:

.var greetingsList = List().add("Fairlight", "Booze Design", "etc.")

Hereisalist of functions defined on list values:

Table6.2. List Values

Functions Description

get(n) Getsthe n'th element (first element starts at zero).

set(n,value) Setsthe n’th element (first element starts at zero).

add(valuel, value2, ...) Add elementsto the end of thelist.

addAll(list) Add al elements from another list.

size() Returnsthe size of thelist.

remove(n) Removes the n’th element.

shuffle() Puts the elements of the list in random order.

reverse() Puts the elements of thelist in reverse order.

sort() Sorts the elements of the list (only numeric values are
supported).

27

Data Structures

6.3. Working with Mutable Values

The list value described in the previous chapter is specia since it is mutable, which means it can change its
contents. At one point in time alist can contain the values[1,6,7] and at another time [1,4,8,9]. The values previ-
ously described in the manual (Numbers, Strings, Booleans) are immutable since instances like 1, false, or “Hello
World” can’t change. In Kick Assembler 3 and later, you will have to lock mutable valuesif you want to use them
in a pass different from the one in which they were defined. When a value is locked, it becomes immutable and
calling a function that modifies its content will cause an error. There are two ways to lock a mutable value. You
can call itslock function:

/1 Locking a list with the |ock function
.var listl = List().add(1,3,5).!1ock()

Or you can define it inside a .define directive:

/1 The define directive |ocks the defined variables outside its scope
.define list2, list3 {
.var list2 = List().add(1,2)

.var list3= List()

.eval list3.add("a")

.eval list3.add("b")
}

//.eval list3.add("c") // This will give an error

The .definedirective definesthe symbolsthat are listed after the .define keyword (list2 and list3). Thedirectives
inside {...} are executed in a new scope so any local defined variables can't be seen from the outside. After
executing the inner directives, the defined values are locked and inserted as constants in the outside scope.

Theinner directivesare executed in 'function mode', which isabit faster and requireslessmemory than ordinary
execution. So if you are using for loops to do some heavy calculations, you can optimize performance by placing
your loop insideadefinedirective. Asthe name'function mode' suggests, directivesplaced insidefunctionsarealso
executed in ‘function mode'. In ‘function mode’ you can only use script directives (like .var, .const, .eval, .enum,
etc) while byte output generating directives (like Ida #10, byte $22, .word $33, .fill 10, 0) are not allowed.

6.4. Hashtable Values

Hashtables are tables that map keys to values. You can define a hashtable with the Hashtable() function. To
enter and retrieve values you use the put and get functions, and with the keys function you can retrieve a list of
all keysinthetable:

.define ht {
/1 Define the table
.var ht = Hashtabl e()

/1 Enter sone val ues (put(key, val ue))

.eval ht.put("rani, 64)

.eval ht.put("bits", 8)

.eval ht.put(1, "Hello")

.eval ht.put(2, "Wrld")

.eval ht.put("directions", List().add("Up","Down","Left","Right"))

/1 Brief ways of initialising tables

.var ht2 = Hashtable().put(1, "Yes").put(2, "No")

.var ht4 = Hashtable().put(1,"a", 2,"b", 3,"c")
}

/'l Retrieve the val ues

.print ht.get(1) /1 Prints Hello

.print ht.get(2) /1 Prints World

.print "ram=" + ht.get("rant') + "kb" /1 Prints ram64kb

28

Data Structures

/[l Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
.print keys.get(i) /[l Prints "ram, "bits", 1, 2, directions
}

When avalueisused asakey then it isthe values string representation that isused. Thismeansthat ht.get(*1.0")
and ht.get(1) returns the same element. If you try to get an element that isn't present in the table, null is returned.

Table 6.3. Hashtable Values

Function Description

put(key,value) Maps 'key' to 'value'. If thekey is previously mapped to
avalue, the previous mapping islost. Thetable itself is
returned.

put(key,value key,value key,value....) Maps several keys to severa values. The table itself is
returned.

get(key) Returns the value mapped to 'key'. A null value is re-
turned if no value has been mapped to the key.

keys() Returns alist value of al the keysin the table.

containsK ey(key) Returnstrueif the key is defined in the table, otherwise
false.

remove(key) Removes the key and its value from the table.

29

Chapter 7
Functions and Macros

This chapter shows how to group directives together in units for later execution. In other words, how to define
and use functions, macros and finally pseudo commands which are a specia kind of macros.

7.1. Functions

You can define you own functions which you can use like any of the build in library functions. Here is an
example of afunction:

.function area(w dth, hei ght) {
.return wi dt h*hei ght
}

.var x = area(3,2)
| da #10+area(4, 8)

Functions consist of non-byte generating directives like .eval, .for, .var, and .if. When the assembler evaluates
the.returndirectiveit returnsthe value given by the proceeding expression. If no expressionisgiven, or if no.return
directive isreached, anull valueis returned. Here are some more examples of functions:

/!l Returns a string telling if a nunber is odd or even
.function oddEven(nunber) {

.if ([nunber&l] == 0) .return “even”

el se .return “odd”

}

/!l Inserts null in all elenents of a |ist
.function clearList(list) {

/! Return if the list is nul

if (list==null) .return

.for(var i=0; i<list.size(); i++) {
list.set(i,null)
}

}

/1 Enmpty function — always returns nul
.function enptyFunction() {

}

You can have severa functions of the same name, as long as they have different number of arguments. So
thisisvalid code:

.function pol yFunction() { .return 0 }
.function pol yFunction(a) { .return 1 }
.function pol yFunction(a,b) { .return 2 }

7.2. Macros

Macros are collections of assembler directives. When called, they generate code as if the directives where
placed at the macro call. The following code defines and executes the macro ‘ SetColor’:

/1 Define macro

.macro Set Col or(col or) {
| da #col or
sta $d020

30

Functions and Macros

/| Execute macro
: Set Col or (1)
Set Col or (2) /1 The colon in front of macro calls is optional fromversion 4.0

A macro can have any number of arguments. Macro calls are encapsulated in a scope, hence any variable
defined inside a macro can't be seen from the outside. This means that a series of macro calls to the same macro
doesn't interfere:

/| Execute macro
Cl ear Scr een($0400, $20) I/ Since they are encapsul ated in a scope
Cl ear Scr een($4400, $20) /1l the two resulting |oop |abels don’t

Il interfere

/| Define macro
.macro C ear Screen(screen, cl earByte) {
| da #cl earByte
| dx #0
Loop: /1 The |l oop |abel can’t be seen fromthe outside
sta screen, x
sta screen+$100, x
sta screen+$200, x
sta screen+$300, x
i nx
bne Loop

Noticethat it is ok to use the macro before it is declared.

Macrosin Kick Assembler are alittle more flexible than ordinary macros. They can call other macros or even
call themselves - Just make sure there is a condition to stop the recursion so you won't get an endless loop.

7.3. Pseudo Commands

Pseudo commands are a specia kind of macros that take command arguments, like #20, table)y or ($30),y as
arguments just like mnemonics do. With these you can make your own extended commands. Here is an example
of amov command that moves a byte from one place to another:

. pseudocommand nov src:tar {

I da src

sta tar
}

Y ou use the mov command like this:

nmov #10 : $1000 [/ Sets $1000 to 10 (lda #10, sta $1000)
nmov source : target /1 target = source (I da source, sta target)
nmov source,x : target,y // (lda source,x , sta target,y)
mov #20 : ($30),y /1 (lda #20, sta ($30),y)

The arguments to a pseudo command are separated by colon and you can use any argument you would give
to amnemonic.

Note: In version 3.x, arguments where separated by semicolon. To make old code compile use the -pseudoc3x
commandline option or convert the code with the 3.x to 4.x converter.

Y ou can add an optional colon in front of the pseudocommand calls. This enables you to call acommand with
the same name as a mnemonic.

. pseudocommand adc argl : arg2 : tar {
| da argl
adc arg2

31

Functions and Macros

sta tar

—

adc #%$10 /1 This calls the standard mmenonic
radc #%$20 : $10 : 320 /1 This calls the pseudoconmand

The command arguments are passed to the pseudo command as CmdValues. These are values that contain an
argument type and a number value. Y ou access these by their getter functions. Here is atable of the functions:

Table7.1. CmdValue Functions

Function Description Example

getType() Returnsatype constant (Seethetable| #20 will return AT_IMMEDIATE.
below for possibilities).

getVaue() Returns the value. #20 will return 20.

The argument type constants are the following:

Table 7.2. Argument Type Constants

Constant Example

AT_ABSOLUTE $1000
AT_ABSOLUTEX $1000,x
AT _ABSOLUTEY $1000,y
AT_IMMEDIATE #10
AT_INDIRECT ($1000)
AT_1ZEROPAGEX ($10,%)
AT _IZEROPAGEY ($10).y
AT_NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above table. Thisis because
the assembler automatically detect when these should be used from the corresponding absolute mode.

Y ou can construct new command arguments with the CmdArgument function. If you want to construct a new
immediate argument with the value 100, you do it like this:

.var nyArgunment = CndAr gunent (AT_I MVEDI ATE, 100)
| da myAr gunment /1l Gves |da #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a function that
given the first argument will return the next in a 16 bit instruction.

.function _16bitnext Argunent (arg) {
.if (arg.get Type()==AT_| MVEDI ATE)
.return CmdArgunent (arg. get Type(), >arg. get Val ue())
.return CrdArgunent (arg. get Type(), arg. get Val ue() +1)

—

We always return an argument of the sametypeastheoriginal. If it'sanimmediate argument we set the valueto
be the high byte of the original value, otherwisewejust increment it by 1. Thiswill supply the correct argument for
the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and IMMEDIATE addressing modes. With this we can easily
define some 16 bits commands:

Functions and Macros

. pseudocommand i ncl6 arg {

inc arg

bne over

inc _16bit next Argunent (ar Q)
over:

}

. pseudocomand nmov16 src:tar {
I da src
sta tar
| da _16bi t next Argunment (src)
sta _16bitnext Argunment (tar)

}

. pseudocomand addl16 argl : arg2 : tar {
.if (tar.get Type()==AT_NONE) .eval tar=argl
clc
| da argl
adc arg2
sta tar
| da _16bi t next Ar gunent (ar gl)
adc _16bi t next Argunment (ar g2)
sta _16bit next Argument (tar)

Y ou can use these like this:

incl6é counter

nov16 #irql : $0314

nmov16 #startAddress : $30
addl6 $30 : #128

addl16 $30 : #$1000: $32

Note how the target argument of the add16 command can be left out. When this is the case an argument with
type AT_NONE is passed to the pseudo command and the first argument is then used as target.

With the pseudo command directive you can define your own extended instruction libraries, which can speed
up some of the more trivia tasks of programming.

33

Chapter 8
Preprocessor

Before the contents of the source file is handed to the main parser, it goes through the preprocessor. The pre-
processor knows nothing of mnemonics or the script language. It's a simple mechanism that enables you to select
pieces of the source to be discarded or included in what the main parser sees. This chapter explains how. (NOTE:
The preprocessor is made like the one used in C# with the addition of #import, #importif and # mportonce so you
might find this familiar)

8.1. Defining preprocessor symbols

The preprocessor uses symbols do determine if it should discard or include portions of the source file. There
are two methods to define a symbol. The first is from the command line. This defines a symbol called TEST":

‘java -jar KickAss.jar -define TEST ‘

A symbol is either defined or not defined. It has no assigned value.
The other way is using the #define directive:

‘#define TEST ‘

Y ou can recognize a preprocessor directive on the '#. If the first non-whitespace character on alineisa'# then
thelineisacall to the preprocessor. If you want to remove the definition of asymbol you use the #undef directive.

‘#undef TEST ‘

8.2. Deciding what gets included

Including or discarding parts of the asourcefileisdone by using #if directives, just likein the script language.

/1 Sinple if block

#i f TEST
inc $d020
#endi f /Il <- Use an endif to close this if block

// You can al so use el se

#f A

.print "Ais defined"
#el se

.print "Ais not defined"
#endi f

Since the source isn't passed on to the main parser, you can write anything inside an untaken if, and it will
still compile.

#undef UNDEFI NED_SYMBOL
#i f UNDEFI NED_SYMBOL

Here we can wite anything since it will never be seen by the main parser...
#endi f

#elif isthe combination of an #else and an #if. It can be used like this:

#if X
.print "X
#elif Y
.print "Y"

Preprocessor

#elif z

.print "Zz"
#el se

.print "Not X, Y and Z"
#endi f

The #if blocks can be nested:

#if A
#if B
.print "A and B"
#endi f
#el se
#if X
.print "not A and X'
#elif Y
.print "not A and Y"
#endi f
#endi f

The indentations doesn't change anything, its just to make the code easier to read.

8.3. Importing files

To include another sourcefile in your code, use the #import directive. Y ou can also make a conditional import
with the #importif directive.

#i nport "MyLi brary. asnf

#i nmportif STAND ALONE "Upstart Code.asnml' //<- Only inported if STAND ALONE is
def i ned

To ensure that afile (e.g. alibrary) is only imported once, place an #importonce inside the imported file

Filel. asm

#i nmport once

.print "This will only be printed once!"
File2. asm

#inmport "Filel.asm' // This will inmport Filel

#inmport "Filel.asm' // This will not inport anything

8.4. List of preprocessor directives

All the preprocessor directives are seen here:

Table8.1. Preprocessor directives

Directive Description

#define NAME Defines a preprocessor symbol by the given name

#undef NAME Removes the symbol definition of the given name, if
any.

#import "filename" Imports afile at the given place in the source.

#importif EXPR "filename" Imports afileif agiven expression evaluates to true.

#importonce Makes sure the current file is only imported once

#if EXPR Discardsthefollowing sourceif the given expression
evaluatesto false.

35

Preprocessor

Directive Description

#endif Ends an #if or #else block.
#else Creates an €l se block.
#elif EXPR The combination of an #else and an #if directiveB

8.5. Boolean operators

A symbol works like a boolean. Either its defined or its not. The #if, #elif and #importif directives takes an
expression that contains symbols and operators and returns either true of false. Here are some examples:

#i f | DEBUG && ! COVPLI CATED
[/l sone stuff
#endi f

#if DEBUG || (X && Y && Z) || X==DEBUG
/1 Note that you can al so use parenthesi s#

#i mporti f DEBUGR&STANDALONE " Upst art Wt hDebug. asnf'

Hereisalist of operators:

Table 8.2. Preprocessor operators

Operator Description

! Negates the expression
&& Logical and.
Il Logical or.

== Returnstrue if the operands are equal.

I= Returnstrueif the operands are not equal.

0 Parenthesis can be used to controll order of evalua
tion

36

Chapter 9
Scopes and Namespaces

Scopes and namespaces are use to avoid entities like symbols and functions in different parts of the program
to collide with each other. This section will cover how they works.

9.1. Scopes

Scopes are containers of symbols (variables, constants and labels). There can only be one symbol of each name
in ascope. Scopes are automatically in many situations. For example, ascopeis set up when you execute amacro.
This prevent the internal labelsto collide if you execute the macro twice.

The easiest way to define a scope yourself is using brackets.

.var x =1

{
}

.var x = 2 /] <- this x won't collide with the previous

9.2. Namespaces

Namespaces are containers of functions, macros and pseudocommands. There can only be one of each of these
entitiesin namespace. Every namespace also have an its own associated scope so each time you define anamespace
ascopesis automatically defined.

A simple way to declare a namespace is shown in the following example. The namespace directivesis covered
in more detail later (and often the .filenamespace directive is more handy):

.function nyFunction() { .return 1}

| abel 1:

. hanmespace nySpace {
.function nyFunction() { .return 1} // <- This won't collide
| abel 1: <- This won't collide

Namespace can be declared more than once. The second time you declare it, it will simply continue with the
already existing namespace.

. nanespace repeat edSpace {
endl ess: jmp *
.function nyFunc() { return 1}

}

. hanmespace repeatedSpace { // <- Don't give an error, we reuse the nanespace
jmp endl ess
.function nmyFunc() { return 2} // <-- This gives an error, nyFunc is already
def i ned

}

If you arein doubt of which nhamespace you are in, you can get its name by the ‘getNamespace()’ function.

.print "Nanespace = "+get Namespace()
. nanespace MySpace {
.print "Namespace = "+get Nanespace()
. nanespace MySubSpace {
.print "Nanespace = "+get Namespace()

}

The above will output:

37

Scopes and Namespaces

Namespace = <Root NS>
Nanespace = MySpace
Namespace = MySpace. MySubSpace

9.3. Scoping hierarchy

Namespaces and scopes are organized in an hierarchy. Every namespace have a parent, except for the system
namespace which is the namespace that contains al the build in functionality of Kick Assembler. Below thisis
the root namespace. As the name implies its the root namespace of the source code.

So the hierarchy islikethis:

1. System namespace & scope - Contains system mnemonics, constants, functions, macros and pseudocom-
mands.

2. Root namespace & scope - Theroot of the source code.

3. User defined namespace & scopes - Created by namespace directives.

4. User defined scopes - Created by macros, functions, for-loops, brackets {}, etc.
5. More user defined scopes...

Letslook at an simple example. It contains some scopes and some nonsense code :

*=$1000
start:
loop: //<-- 'loop' defined in the root scope
{ /Il <-- bracket scope 1
| oop:
{ /Il <-- bracket scope 2
| dx #0
| oop: stx $d020
i nx
bne | oop
jnmp start
}
}

The above code will form the scope hierarchy: System scope <- Root Scope <- BracketScopel <- BracketS-
cope2.

When Kick Assembler resolvesasymbol, it checksif it is present in the the current scope. If it can't be found it
looksin the parent scope. If it still can't be found it looksin the parent scope of the parent and so forth. In the above
example, the'jmp loop' is placed in BracketScope2, so 'loop' isresolved to the loop symbol in BracketScope2. But
'start’ is not defined in BracketScope2 or BracketScopel so it will be resolved to the label in the root scope.

Since no namespaces are defined in the above, the namespace hierarchy is; System namespace <- Root Name-
space. The entities of namespacesis resolved similar to the scope resolving mechanism explained above.

9.4. The Namespace Directives

As aready seen you can declare namespaces with the namespace directive. When declared it places a symbol
inside the scope the parent namespace so the label sinside can be accessed aslocal fields of the namespace symbol:

. nanespace Vi c {
.l abel border Col or = $d020
.l abel backgroundCol or0 = $d021
. | abel backgroundCol or1 = $d022

38

Scopes and Namespaces

.| abel backgroundCol or2 = $d023

| da #0
sta vic. backgroundCol or0
sta vic. border Col or

Namespaces are normally used to make sure that code in a source file (Like a library) is not colliding with
other parts of the code. For this, Place the filenamespace directive at the top of the file and everything after that
is placed in the desired namespace:

/* FILE O */

jsr partl.init
jsr partl.exec
jsr part2.init
jsr part2.exec

rts
/* FILE 1 */
.fil enanespace partl
init:
rts
exec:
rts
/* FILE 2 */
.fil enanespace part2
init:
rts
exec:
rts

9.5. Escaping the current scope or namespace

To escape the current scope, use @ to reference the root scope. In the following code '@myL abel' access the
myL abel label in the root scope:

.l abel nyLabel =1

{
.l abel nyLabel = 2
.print "scoped nyLabel ="+ nylLabel //<-- Returns 2
.print "root myLabel ="+ @wyLabel //<-- Returns 1
}

The same can be done for functions, macros and pseudo commands. So the following example will print ‘root'
not 'mySpace’:

.function nyFunction() { .return "root"}

. nanespace nySpace {
.function nyFunction() { .return "nmySpace" }
.print @yFunction()

39

Scopes and Namespaces

Y ou can also put new entitiesin the root scope when defining them from within another scope:

j sr outside_l abe

rts
{
@ut si de_| abel :
| da #0
sta $d020
sta $d020
rts
}
or:
{
.label @ = 1234
.var @= "Hello world"
.const @= true
}

.print "x="+x
.print "y="+y
.print "z="+z

Or for functions, macros or pseudo commands, here shown in alibrary file:

#i nmport "nylib.lib"

.print nyFunction()

MyMacr o()
MyPseudoConmand

/* File nylib.lib */
#i nport once
.fil enanespace MyLi brary

.function @ryFunction() {
.return 1

}

.macro @yMacro() {
.print "Macro Call ed"
}

. macro @& PseudoConmand {
.print "PseudoConmand Cal | ed"

}

9.6. Label Scopes

If you declare a scope after alabel you can access the |abels inside the scope as fields on the declared label.
Thisis handy if you use scoping to make the labels of your functions local:

lda # °

sta clearScreen.fillbyte+l
j sr cl earScreen

rts

cl ear Screen: {
fillbyte: |da #0

40

Scopes and Namespaces

| dx #0

| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

The above code fills the screen with black spaces. The code that calls the clearScreen subroutine use
clearScreen.fillbyte to access the fillbyte [abel. If you use the label directive to define the fillbyte label, the code
can be done alittle nicer:

lda # &’

sta clearScreen2.fill byte
j sr cl ear Screen2

rts

Cl ear Screen2: {
.label fillbyte = *+1
| da #0
| dx #0

| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

Now you don't have to remember to add one to the address before storing the fill byte.

Label scopes also works with the label directive, so its also possible to write programs like this:

.l abel nyl abel 1= $1000 {
.l abel nyl abel 2 = $1234
}

.print “nylabl e2="+nyl abel 1. nyl abel 2

9.7. Accessing Local Labels of Macros and Pseudocommands

Label scopes are also created when placing a label before a macro or pseudocommand execution as demon-
strated in the following program:

*=$1000
start: inc cl.color

dec c2. col or
cl: :set Col or ()
c2: :set Col or ()

jmp start

.macro setColor() {
.l abel color = *+1
| da #0
sta $d020

In this way, you can access the |abels of an executed macro.

41

Scopes and Namespaces

9.8. Accessing Local Labels of For / While loops

By placing alabel in front of afor or awhile loop, alabel scope array is created. Thisway you can access the
inner labels of aloop from the outside or the labels of one loop from another loop:

for (var i=0; i<20; i++) {
| da #i
sta |l oop2[i].col or+1

}
loop2: .for (var i=0; i<20; i++) {
col or: | da #0
sta $d020
}

9.9. Accessing Local Labels of if's

By placing alabel in front of an .if directive you can access the labels of the taken branch (true or false) of the
directive. The symbol need only to be defined in the taken branch. If the condition is evaluated to false and no
false branch exists, all references to symbols give an 'symbol undefined' error . Here is an example:

jmp nylf.labe

mylf: .if (true) {

| abel : iaé #0 // <-- Junps here
} else {

label: nop

}

42

Chapter 10
Import and Export

In this chapter we will look at other ways to get datain and out of Kick Assembler.

10.1. Passing Command Line Arguments to the Script

From the command line you can assign string values to variables, which can be read from the script. Thisis
done with the*:" notation like this:

‘j ava —jar KickAss.jar mySource.asm :x=27 :sound=true :title="Beta 2"

The three variables x, sound and beta2 and their string values will now be placed in a hashtable that can be
accessed by the global variable cmdLineVars:

.print “version =" + cmdLi neVars. get(“version”)
.var x= cndLi neVars. get (“x”).asNunber ()

.var y= 2*x

.var sound = cndLi neVars. get (" sound”) . asBool ean()
.if (sound) jsr $1000

10.2. Import of Binary Files

It's possible to load any file into a variable. This is done with the LoadBinary function. To extract bytes of
the file from the variable you use the get function. Y ou can also get the size of the file with the getSize function.
Hereisan example:

/!l Load the file into the variable 'data’
.var data = LoadBi nary("nmyDataFile")

/] Dunp the data to the nmenory
myData: .fill data.getSize(), data.get(i)

The get function extracts signed bytes as defined by java, which means the byte value $ff gives the number -1.
Thisis not a problem when dumping bytes to memory, however if you want to process the data you might want
an unsigned byte. To get an unsigned byte use the uget function instead. The byte value $ff will then return 255.

When you know the format of the file, you can supply a template string that describes the memory blocks.
Each block is given aname and a start address relative to the start of the file. When you supply atemplate to the
LoadBinary function, the returned value will contain aget and a size function for each memory block:

.var dataTenpl ate = "Xcoor d=0, Ycoor d=$100, BounceDat a=$200"
.var file = LoadBi nary(“noveData”, dataTenpl ate)

Xcoor d: fill file.getXCoordSize(), file.getXCoord(i)
Ycoor d: .fill file.getYCoordSize(), file.getYCoord(i)
BounceData: .fill file.getBounceDataSi ze(), file.getBounceData(i)

Again, file.ugetXCoord(i) will return an unsigned byte.

There is a special template tag named ‘C64FILE’ that is used to load native c64 files. When this is in the
template string, the LoadBinary function will ignore the two first byte of the file, since the first two bytes of a
C64 file are used to tell the loader the start address of the file. Here is an example of how to load and display a
KoalaPaint picturefile:

.const KOALA TEMPLATE = "C64FI LE, Bitnap=$0000, ScreenRam=$1f40, Col or Ram=$2328,
Backgr oundCol or = $2710"
.var picture = LoadBi nary("picture.prg", KOCALA TEMPLATE)

43

Import and Export

*=$0801 "Basi c Progrant
Basi cUpst art ($0810)

*=$0810 " Progrant'

| da #$38

sta $d018

| da #$d8

sta $d016

| da #$3b

sta $d011

| da #0

sta $d020

| da #pi ct ure. get Backgr oundCol or ()

sta $d021

I dx #0

'l oop:

for (var i=0; i<4; i++) {
| da col or Ram+i *$100, x
sta $d800+i *$100, x

}

i nx

bne !l oop-

jmp *

*=$0c00; .fill picture.getScreenRantSi ze(), picture.getScreenRan(i)
*=$1c00; colorRam .fill picture.getCol orRantSi ze(), picture. get Col or Ran(i)
*=3$2000; .fill picture.getBitmapSize(), picture.getBitmap(i)

Notice how easy it is to reallocate the screen and color ram by combining the *= and .fill directives. To avoid
typing in format types too often, Kick Assembler has some build in constants you can use:

Table 10.1. BinaryFile Constants

Binary format constant Blocks Description

BF C64FILE A C64 file (The two first bytes are
skipped)

BF BITMAP_SINGLECOLOR ColorRam,ScreenRam,Bitmap The Bitmap single color format out-
putted from Timanthes.

BF_KOALA Bitmap, ScreenRam,Col orRam,BackgFiLexiCahoik oal a Paint

BF_FLI ColorRam,ScreenRam,Bitmap Filesfrom Blackmails FLI editor.

Soif you want to load aFL I picture, just write

.var fliPicture = LoadBi nary(" G eatPicture", BF_FLI)

The formats were chosen so they cover the outputs of Timanthes (NB. Timanthes doesn’t save the background
color in koalaformat, so if you use that you will get an overflow error).

TIP: If you want to know how datais placed in the above formats, just print the constant to the console while
assembling. Example:

‘.print "Koal a format="+BF_KOALA

10.3. Import of SID Files

The script language knowstheformat of SID files. Thismeansthat you can import files directly from the HV SC
(High Voltage Sid Collection) which uses this format. To do this you use the LoadSid function which returns a
value that represents the sidfile.

.var nusic = LoadSi d("C:/c64/ HVSC 44-all - of -t heml C64Musi c/ Tel _Jer oen/
Cl osing_ln.sid")

Import and Export

From this you can extract data such astheinit address, the play address, info about the music and the song data.

Table 10.2. SIDFileValue Properties

Attribute/Function Description

header Thesid file type (PSID or RSID)

version The header version

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

speed The speed flags (Consult the Sid format for details)

flags flags (Consult the Sid format for details)

startpage Startpage (Consult the Sid format for details)

pagelength Pagelength (Consult the Sid format for details)

size The datasize in bytes

getData(n) Returns the n'th byte of the module. Use this function
together with the size variable to store the modules bi-
nary datainto the memory.

Here is an example of use:

e
e
/1 SI D Pl ayer
e
e

.var music = LoadSi d("Ni ghtshift.sid")

Basi cUpstart 2(start)
start:

| da #$00

sta $d020

sta $d021

| dx #0

I dy #0

| da #nusi c. start Song- 1
jsr music.init
sei

| da #<irqgl
sta $0314

| da #>irql
sta $0315

asl $d019

| da #$7b

sta $dcOd

| da #$81

sta $d0la

| da #$1b

sta $d011

| da #$80

sta $d012

45

Import and Export

cli

jmp *

L e e
irql:

asl $d019

i nc $d020

j sr musi c. pl ay

dec $d020

pl a

tay

pl a

t ax

pl a

rti
L e e

*=nusi c. | ocati on "Misic"

.fill nusic.size, nusic.getData(i)
e e
/1 Print the nmusic info while assenbling
.print ""

.print "SID Data"
.print "-------- "

.print "location=$"+t oHexString(nusic.l|ocation)
.print "init=$"+toHexString(nusic.init)

.print "play=$"+t oHexStri ng(nusic. play)

.print "songs="+nusi c. songs

.print "startSong="+nusic. start Song

.print "size=$"+toHexString(nusic.size)

.print "name="+nusi c. nane

.print "author="+nusi c. aut hor

.print "copyright="+nusic. copyri ght

.print ""

.print "Additional tech data"

Lprint Me--aaooiee e

.print "header="+nusi c. header

.print "header version="+mnusic.version
.print "flags="+toBi naryString(nusic.flags)
.print "speed="+toBi naryString(nusic.speed)
.print "startpage="+nusic. start page

.print "pagel engt h="+nusi c. pagel engt h

Assembling the above code will create amusicplayer for the given sidfileand print theinformationinthemusic
file while assembling:

SI D Dat a

| ocati on=$1000

i ni t=$1d70

pl ay=$1003

songs=1. 0

start Song=1. 0

si ze=$d78

nane=Ni ght shi ft

aut hor=Ari Yliaho (Ageni xer)
copyri ght =2001 Scal | op

Addi ti onal tech data

header =PSI D

header version=2.0
fl ags=100100
speed=0

46

Import and Export

start page=0.0

TIP: If you use the—libdir option to point to your HV SC main directory, you don’t have to write long filenames.
For example:

.var mnusic LoadSi d(" C: / c64/ HVSC 44- al | - of -t hem C64Musi c/ Tel _Jer oen/
Cl osing_l n.sid")

will be

‘ .var nmusi c = LoadSi d("Tel _Jeroen/C osing_In.sid")

10.4. Converting Graphics

Kick Assembler makes it easy to convert graphics from gif and jpg files to the basic C64 formats. A picture
can be loaded into a picture value by the LoadPicture function. The picture value can then be accessed by various
functions depending on which format you want. The following will place a single color logo in a standard 32x8
char matrix charset placed at $2000.

*=$2000
.var logo = LoadPicture("CM._32x8.gif")
.fill $800, |ogo.getSinglecolorByte((i>>3)&$1f, (i&7) | (i>>8)<<3)

If you don't like the compact form of the .fill command you can use a for loop instead. The following will
produce the same data:

*=$2000
.var logo = LoadPicture("CM._32x8.gif")
.for (var y=0; y<8; y++)
.for (var x=0; x<32; x++)
.for(var charPosY=0; charPosY<8; char PosY++)
. byt e | ogo. get Si ngl ecol or Byt e(x, char PosY+y*8)

The LoadPicture can take a color table as the second argument. This is used to decide which bit pattern is
produced by a pixel. In single color mode there are two hit patters (%0 and %1) and multi color mode has four
(%00, %01, %10 and %11). If you don’t specify a color table, a default table is created based on the colorsin the
picture. However, normally you wish to control which color is mapped to a bit pattern. The following shows how
to convert a picture to a 16x16 multi color char matrix charset:

*=$2800 “Logo”
.var picture = LoadPicture("Picture_16x16.gif",

Li st (). add($444444, $6c6c6c, $959595, $000000))
.fill $800, picture.getMlticolorByte(i>>7,i&$7f)

The four colors added to the list are the RGB values for the colors that are mapped to each bit pattern.

Finally the picture value contains a getPixel function from which you can get the RGB color of a pixel. This
comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Table 10.3. PictureValue Functions

Attribute/Function Description

width Returns the width of the picturein pixels.

height Returns the height of the picturein pixels.

getPixel(x,y) Returnsthe RGB value of the pixel at position x,y. Both
x and y are givenin pixels.

47

Import and Export

Attribute/Function Description

getSinglecolorByte(x,y) Converts 8 pixels to a single color byte using the color
table. X is given as a byte number (= pixel position/8)
andy isgivenin pixels.

getMulticolorByte(x,y) Converts4 pixelstoamulti color byte using the color ta-
ble. X isgiven as abyte number (= pixel position/8) and
y is given in pixels. (NB. This function ignores every
second pixel since the C64 multi color format is half the
resolution of the single color.)

10.5. Writing to User Defined Files

With the createFile function you can create/overwrite a file on the disk. You call it with a file name and it
returns avalue that can be used to write data to the file:

.var nyFile = createFil e("breakpoints.txt")
.eval nyFile.witeln("Hello Wrld")

IMPORTANT! For security reasons, you will have to use the —afo switch on the command line otherwise file
generation will be blocked. Eg “java—ar KickAss,jar source.asm -afo” will do the trick.

File creation is useful for generating extra data for emulators. The following example shows how to generate
afile with breskpoint for VICE:

.var brkFile = createFile("breakpoints.txt")

.macro break() {
.eval brkFile.witeln(“break “ + toHexString(*))
}

*=$0801 “Basic”
Basi cUpstart (start)

*=$1000 " Code"
start:
i nc $d020
br eak()
jmp start

When running VICE with the breakpoint file (use the -moncommands switch), VICE will run until the break
and then exit to the monitor.

Hereisalist of the functions on afile value:

Table 10.4. FileValue Functions

Attribute/Function Description

Attribute/Function Description.
writeln(text) Writesthe ‘text’ to the file and insert aline shift.
writeln() Insert aline shift.

10.6. Exporting Labels to other Sourcefiles

By using the —symbolfile option at the commandline it's possible export all the assembled symbols. Theline

‘j ava —j ar KickAss.jar sourcel.asm —synbol file

will generate the file sourcel.sym while assembling. Lets say the content of sourcel is:

48

Import and Export

.fil enanespace sourcel
*=$2000
cl ear Col or:
| da #0
sta $d020
sta $d021
rts

The content of sourcel.sym will be:

. namespace sourcel {
.l abel clearColor = $2000
}

It's now possible to refer to the labels of sourcel.asm from another file just by importing the .sym file:

.import source “sourcel.syni
j sr sourcel. cl ear Col or

10.7. Exporting Labels to VICE

By using the —vicesymbols option you can export the labelsto a .vsfile that can be read by the VICE emulator.
For example:

‘java —j ar Ki ckAss.jar sourcel.asm —vi cesynbol s

49

Chapter 11
Modifiers

With modifiers, you can modify assembled bytes before they are stored to the target file. It could be you want
to encrypt, pack or crunch the bytes. Currently, the only way to create a modifier is to implement a java plugin
(See the plugin chapter).

11.1. Modify Directives

Y ou can modify the assembled bytes of alimited block or of the whole sourcefile. To modify the whole source
file use the .filemodify directive at the top of the file. The following modifies the whole file with the modifier
‘MyModifier’ called with the parameter 25.

.filenmodi fy MyMdifier(25)

To modify alimited block you use the .modify directive:

.modi fy MyModifier() {

*=3$8080
nmai n:
inc $d020
dec $d021
jmp main
*=$1000
fill $100, i
}

50

Chapter 12
Special Features

Misc features

12.1. Name and path of the sourcefile
Y ou can get the filename and the path of the current sourcefile with the getPath() and getFilename() functions:

.print "Path : " + getPath()
.print "Filenane : " + getFilenane()

12.2. Basic Upstart Program

To make the assembled machine code run on aC64 or in an emulator, it'suseful toincludealittle basic program
that startsyour code (for example: 10 sys4096). The BasicUpstart macro is standard macro that helpsyou to create
programs like that. The following program shows how it’s used:

*= $0801 "Basic Upstart"
Basi cUpstart (start) /] 10 sys$0810

*= $0810 " Progrant
start: inc $d020

inc $d021

jmp start

TIP: Insert at basic upstart program in the start of your programs and use the —execute option to start Vice. This
will automatically load and execute your program in Vice after successful assembling.

Thereis asecond variation of the basic upstart macro that also takes care of setting up memory blocks:

Basi cUpstart2(start) /] 10 sys$0810
start: inc $d020

inc $d021

jmp start

If you want to seethe script code for the macros, you can look in the autoinclude.asmfilein the KickAssjar file.

12.3. Opcode Constants

When making self modifying code or code that unrolls speed code, you have to know the value of the opcodes
involved. To makethiseasier, al the opcodes have been given their own constant. The constant isfound by writing
the mnemonic in uppercase and appending the addressing mode. For example, the constant for a rts command is
RTSand ‘lda#0’ isLDA_IMM. So, to place an rts command at target you write:

| da #RTS
sta target

Y ou get the size of a mnemonic by using the asmCommandSize command

.var rtsSize = asnComuandSi ze(RTS) [/rtsSize=1
.var | daSizel asmCommandSi ze(LDA_ I M) / /| daSi zel=2
.var | daSize2 asnComandSi ze(LDA _ABS) //| daSi ze2=3

Here are alist of the addressing modes and constant examples:

51

Special Features

Table 12.1. Addressing Modes

Argument Description Example constant Example command
None RTS rts
IMM Immediate LDA_IMM Ida#$30
ZP Zeropage LDA_ZP Ida $30
ZPX Zeropage,x LDA_ZPX Ida $30,x
ZPY Zeropage,y LDX_ZPY Idx $30,y
1ZPX Indirect zeropage,x LDA_1ZPX Ida ($30,x)
1ZPY Indirect zeropage,y LDA _1ZPY Ida ($30),y
ABS Absolute LDA_ABS Ida $1000
ABSX Absolute,x LDA_ABSX Ida $1000,x
ABSY Absolutey LDA_ABSY |da $1000,y
IND Indirect JMP_IND jmp ($1000)
REL Relative BNE_REL bne loop

12.4. Colour Constants

Kick Assembler has build in the C64 colour constants:

Table 12.2. Colour Constants

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

BROWN

LIGHT_RED
DARK_GRAY/DARK_GREY
GRAY/GREY
LIGHT_GREEN
LIGHT_BLUE
LIGHT_GRAY/LIGHT_GREY

<
o
c
(0]

Ol (N B~ WIN| PO

=
o

-
[N

[ERY
N

[
w

[ERN
N

=
ol

Example of use:

| da #BLACK
sta $d020
| da #VWH TE
sta $d021

52

Special Features

12.5. Making 3D Calculations

To makeit easy to to make 3D Calculations, Kick Assembler supports vector and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y and z as
argument:

.var vl
.var v2

Vector (1, 2, 3)
Vector (0, 0, 2)

Y ou can access the coordinates of the vector by its get functions and do the most common vector operations
by the assigned functions. Here are some examples:

.var v1PlusV2 = vi1+v2
.print "V1 scaled by 10 is " + (v1*10)
.var dot Product = vi*v2

Hereisalist of vector functions and operators:

Table 12.3. Vector Value Functions

Function/Operator Example Description

get(n) Returns the n'th coordinate (x=0,
y=1, z=2).

getX() Returns the x coordinate.

getY () Returnsthey coordinate.

getZ() Returns the z coordinate.

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors.

- Vector(1,2,3)-Vector(2,3,4) Returnstheresult of asubtraction be-
tween the two vectors.

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a num-
ber.

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product.

/ Vector(1,2,3)/2 Divides each coordinate by a factor
and returns the result.

X(v) Vector(0,1,0).X (Vector(1,0,0)) Returns the cross product between
two vectors.

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the other
constructor functions described later. Y ou access the entries of the matrix by using its get and set functions:

.var matrix = Matrix() /Il Creates an identity matrix
.eval matrix.set(2,3,100)

.print "Matrix.get(2,3)=" + matrix.get(2,3)

.print "The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be to move
the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity matrix, which is one
that leaves the coordinates unchanged. By using the set function you can construct any matrix you like. However,
Kick Assembler has constructor functions that create the most common transformation matrixes:

Table12.4. Matrix Value Constructors

Function Description
Matrix() Creates an identity matrix.

53

Special Features

Function Description

RotationMatrix(ax,aY ,aZ) Creates a rotation matrix where aX, a¥Y and aZ are the
anglesrotated around the x, y and z axis. The angles are
giveninradians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled
by sX, the y-coordinate by sY and the z-coordinate by
sZ.

MoveMatrix(mX,mY,mZ) Creates amove matrix that moves mX along the x-axis,
mY along the y-axis and mZ along the z-axis.

PerspectiveMatrix(zProj) Creates a perspective projection where the eye-point is

placed in (0,0,0) and coordinates are projected on the
XY -plane where z=zProj.

You can multiply the matrixes and thereby combine their transformations. The transformation is read from
right to left, so if you want to move the space 10 along the x axis and then rotate it 45 degrees around the z-
axis, you write:

.var m= RotationMtrix(0, 0, toRadi ans(45))*MveMatri x(10, 0, 0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = nrVector(10, 0, 0)
.print "Transformed v=" + v

The functions defined on matrixes are the following:

Table 12.5. Matrix Value Functions

Function/Oper ator Example Description

get(n,m) Getsthe value at n,m.

set(n,m,value) Setsthevalue at nm.

Vector Matrix() Vector(1,2,3) Return the product of the matrix and
avector.

Matrix Matrix() Matrix() Returns the product of two matrixes.

Hereisalittle programtoillustrate how matrixes can be used. It pre cal cul ates an animation of acubethat rotates
around the x, y and z-axis and is projected on the plane where z=2.5. The dataiis placed at the label * cubeCoords':

.var Cube = List().add(
Vector(1,1,1), Vector(1,1,-1), Vector(1,-1,1), Vector(1,-1,-1),
Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

.macro Precal cObj ect (obj ect, aninLength, nrOf Xrot, nrOf Yrot, nrOfZrot) ({

/! Rotate the coordi nate and pl ace the coordi nates of each franms in a |list
.var frames = List()
.for(var frameNr=0; franmeNr<aninlength;frameNr++) {

[/l Set up the transform matrix

.var aX = toRadi ans(frameNr*360*nr Cf Xr ot/ ani mLengt h)

.var aY = toRadi ans(frameNr*360*nr Cf Yr ot/ ani mLengt h)

54

Special Features

.var aZ = toRadi ans(frameNr*360*nr Cf Zr ot / ani nLengt h)
.var zp = 2.5 // z-coordinate for the projection plane
.var m= Scal emvatrix(120, 120, 0) *

Per specti veMatri x(zp)*

MoveMat ri x(0, O, zp+5) *

Rot ati onMat ri x(aX, aY, az)

/1 Transformthe coordinates

.var coords = List()

.for (var i=0; i<object.size(); i++) {
.eval coords. add(nrobject.get(i))

}

.eval franes. add(coords)

}

/] Dunp the list to the menory
.for (var coordNr=0; coordNr<object.size(); coordNr++) {
.for (var xy=0;xy<2; xy++) {
.fill animength, $80+round(franes.get(i).get(coordNr).get(xy))

}

}
}
e e
/1l The vector data
e e
.align $100
cubeCoords: Precal cObj ect (Cube, 256, 2,-1, 1)
e e

55

Chapter 13
Assemble Information

Kick Assembler 4, and later versions, exposes information of build in features and of the assembled source
files. Thisisintended for authors of editorswho want to provide extra support for Kick Assembler such asrealtime
error and syntax feedback and help text for build in directives and libraries. These features are under development
and the interface might change. If you plan to use this get in touch with the author so we can coordinate our efforts.

13.1. The Asminfo option

To get assemble info back from Kick Assembler, use the -asminfo option:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all

When executing the above statement, output is written to the file "asminfo.txt", but you can specify the file
by the -asminfofile option:

‘java -jar KickAss.jar mysource.asm-asmnfo all -asm nfofile nyAsm nfo. t xt

The content of the file will have different sections dependent on what info you have requested. The second
parameter describeswhichinfoisreturned, sointheabove exampleall possibleinfoisreturned. Theoutput divided
into sections, with different types of information, here is an example:

[libraries]

Mat h; const ant ; Pl

Mat h; const ant ; E

Mat h; f uncti on; abs; 1
Mat h; f uncti on; acos; 1

[directives]
.text;.text "hello"; Dunmps text bytes to nmenory.
. by; . by $01, $02, $03; An alias for '.byte'.

[files]

0; Ki ckAss. jar:/incl ude/ aut oi ncl ude. asm
1; nySour ce. asm

[synt ax]

synbol Ref er ence; 38, 8, 38,17, 0

synbol Ref er ence; 41, 20, 41, 26, 0
functionCall ; 41, 8, 41, 18,0

synbol Ref er ence; 56, 8, 56, 17, 0

[errors]

The details of the sections will be explained later.

There are two categories of asminfo: Predefined info, which contains information about the features that is
build into the assembler like directives and libraries. The other main category is source specific informations, like
the syntax of the source or errors in the source. Y ou can turn on one or several categories or sections:

Thiswill export all predefined assemble info sections:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all Predefined

And thiswill export all predefined assemble info sections and any errors:

‘j ava -jar KickAss.jar mysource.asm -asm nfo all Predefined|errors

Noticethe'|' isused to give several selections - you can add as many as you want. Thisisthe available options:

56

Assemble Information

Table 13.1. Asminfo

Name Category Description

al meta Exportsal info, both predefined and
source specific

allPredefined meta All predefined infos

alSourceSpecific meta All source specific infos

libraries predefined The defined libraries (Functions and
constants)

directives predefined The defined directives

preprocessorDirectives predefined The defined preprocessor directives

files sourceSpecific Thefilesinvolved in the assembling

syntax sourceSpecific Syntax info of the given files

errors sourceSpecific Errors of the assembling

When the category says 'meta’ the option is used to select several of the sections. When the category is not
'meta’ the option refersto a specific section. The details of the sectionsis given in later chapters.

13.2. Realtime feedback from the assembler

For writers of editors Kick Assembler has some special features which enables you to get info about the source
filewhilethe user isediting it. Thisisdone by calling Kick Assembler in strategic places|like, when the user hasn't
typed anything for a given period of time.

First, the content of the one or several source files might not be saved. To get by this, save the content to a
temporary file and use the replacefile option to substitute the content of the original file:

java -jar KickAss.jar mysource.asm -replacefile c:\ka\mysource.asmc:\tnp
\'t npSour ce. asm

This replaces the content of the first file with the second. It doesn't matter if the fileisthe main file or included
by another filer, and your can have as many replaceFile options as you want.

Secondly, you don't want Kick Assembler to do a complete assembling each time you call it. It might take
too much time to assemble and you don't want the assembler to overwrite output. To take care of this, use the -
noeval option.

‘j ava -jar KickAss.jar mysource.asm -noeval

This make Kick Assembler parse the source file and do an initial pass, no evaluation will be done. This will
detect syntax errors and return syntax information.

13.3. The Asminfo file format

The assembly info filesis divided into sections. If the first char of alineis ' it marks a new section, and the
name of the section is written between square brackets. Each line consist of one or more semicolon separated
fields. Noticethat in special cases, thelast field might contain asemicolonitself (Thiswill be noted in theinvolved
sections). So the basic file format looks like this:

[sectionl]
fieldl;field2;field3
fieldl;field2;field3
fieldl;field2;field3
[secti on2]
fieldl;field2
fieldl;field2
fieldl;field2

57

Assemble Information

As specia type of field, which is used in several sectionsis a 'source range' which describes a range of chars
inasourcefile. It consist of 5 integers:

‘startl ine, startposition, endline, endposition, fileindex

The positions is the positions in a given line. The file index tell which file it isand is an index pointing to an
entry in the files section. An example of a source rangeis:

‘38,8,38,17,1

13.4. The sections

Here, the details of the different sectionsin the asminfo file is explained.

13.4.1. Libraries section

The format of the libraries section are:

|'i brarynane; entrytype; typedat a

There are two entry types: ‘function’' and ‘constant’. The type data depends on the entry type, and is either:

|'i brarynane; const ant ; const ant nanme
I'i brarynane; functi on; functi onnanme; nunber & Ar gunent s

Examples:

[l'ibraries]

Mat h; const ant ; Pl

Mat h; const ant ; E

Mat h; functi on; abs; 1
Mat h; functi on; acos; 1

13.4.2. Directives section

The format of the directives sectionis:

directive; exanpl e; descri ption

Example:

[directives]
.text;.text "hello"; Dunps text bytes to nenory.

13.4.3. Preprocessor directives section

The format of the preprocessor directives sectionis:

directive; exanpl e; descri pti on

Example:

[ppdirectives]
#def i ne; #def i ne DEBUG, Defi nes a preprocessor synbol .

13.4.4. Files section
Thefilelist section isalist of the involved files. The fields are:

58

Assemble Information

i ndex; fil epath

Important: The file path might contain semicolons!
Anexampleof alistis:

[files]
0; Ki ckAss. jar:/incl ude/ aut oi ncl ude. asm
1;testl. asm

Noticethefirst entry startswith KickAss.jar. Thismeansthat itsafileincluded from insidethe KickAssjar file.

13.4.5. Syntax section

The syntax section has the format:

t ype; sour cer ange

Example:

[synt ax]
oper at or; 21, 20, 21, 20, 0

Note: Itsthe plan to add more fields here, like where athe label is defined if its alabel reference, etc.

13.4.6. Errors section

The errors section has the format:

| evel ; sour cer ange; nessage

Example:

[errors]
Error;41,2,41,7,1; Unknown preprocessor directive #defin

59

Chapter 14
Testing

Kick Assembler has .assert directives that are useful for testing. They were made to make it easy to test the
assembler itself, but you can use them for testing your own pseudo-commands, macros, functions. When assertions
are used, the assembler will automatically count the number of assertions and the number of failed assertions and
display these when the assembling has finished.

14.1. Asserting expressions

With the assert directive you can test the value of expressions. It takes three arguments: a description, an
expression, and an expected result.

.assert "2+5*10/2", 2+5*10/2, 27
.assert "2+2", 2+2, 5
.assert "Vector(1,2,3)+Vector(1,1,1)", Vector(1,2,3)+Vector(1,1,1), Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the expected
result. If these don’'t match an error message is appended:

2+5*10/ 2=27.0 (27.0)
2+2=4.0 (5.0) — ERROR | N ASSERTI ON! !'!
Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

14.2. Asserting errors in expressions

To make sure that an expression gives an error when the user gives the wrong parameters to a function, use
the .asserterror directive:

.asserterror "Testl" , 20/10
.asserterror "Test2" , 20/false

In the above example test1 will fail sinceits perfectly legal to divide 20 by 10. Test2 will produce the expected
error so this assertion is ok. The above will give the following output:

Testl — ERROR | N ASSERTI ON!
Test2 — OK. | Can't get a nuneric representation froma val ue of type bool ean

14.3. Asserting code

The assert directive has a second form which makes it possible to compare pieces of assembled code:

.assert "Test2", { lda $1000 }, {ldx $1000}

.assert "Test", {
.for (var i=0; i<4; i++)

sta $0400+i
b A
sta $0400
sta $0401
sta $0402
sta $0403
}

The assert directive will give an ok or failed message and the assembled result as output. The output of the
above exampleis asfollows:

60

Testing

Test1l — FAILED! | 2000: ad, 00,10 -- 2000: ae, 00, 10
Test2 — OK. | 2000: 8d, 00, 04, 8d, 01, 04, 8d, 02, 04, 8d, 03, 04

14.4. Asserting errors in code

Like the assert directive the asserterror directive also has a form that can assert code:

‘. asserterror “Test” , { lda # This nust fail”}
Output:
Test — OK. | The value of a Command Argunent Value nust be an integer. Can’t get an

i nteger froma value of type ‘string’

61

Chapter 15
3rd Party Java plugins

It's possible to write you own plugins for Kick Assembler. Currently the following types of plugins are sup-
ported:
* Macro Plugins - Implements macros
» Modify Plugins — Implements modifiers

* Archive Plugins — Used to group the above pluginsin one unit

15.1. The Test Project

Before going any further | suggest you download the plugin development test eclipse project from the Kick
Assembler website.

To useit do the following:

1. Create an Eclipse workspace.

2. "Import->Existing Projects into workspace->Select archive file' and select the downloaded project file.
3. Replacethe KickAssjar filein the jars folder with the newest version, if necessary.

You are now ready to start. In the src folder you can see examples of how the plugins are made. The filesin
PluginTest shows how to use them and in the launch folder is launch files for running the examples (Rightclick-
>Run As).

15.2. Registering your Plugins

To work with plugins you should do two things. When assembling you should make your compiled java class
visible from the java classpath. If you are using eclipse to run your Kick Assembler, like in the example project,
you don’t have to worry about this. If you are using the command line you will have to set either the classpath
environment variable or use the classpath option of the java command.

Secondly you should tell Kick Assembler about your plugin. There are two ways to do this. If your pluginis
only used in one of your projects, you should use the .plugin directive. Eg:

.plugin "test.plugins. macr os. M\yMacr o"

If the plugin should be available every time you use Kick Assembler, you place the class namein alinein the
file ‘KickAss.plugin’ which should be placed in the same locations as the KickAss.jar. Using // in the start of the
line makes it acomment. Example of aKickAss.pluginfile:

/1 My macro plugins

test. pl ugi ns. macr os. MyMacr ol
test. pl ugi ns. macr os. MyMacr 02
test. pl ugi ns. macr os. MyMacr 03

15.3. Macro Plugins

Macro plugins ajava classes that implements the IMacro interface:

public interface | Macro {
String get Nane();
byte[] execute(lValue[] paraneters, |Engine engine);

A simple example of amacrois:

62

3rd Party Java plugins

i mport kickass.plugins.interf.*;

public class MyMacro i npl ements | Macr of
@verri de
public String getName() {
return "MyMacro";

}
@verri de

public byte[] execute(lValue[] paraneters, |Engine engine) {
engine.print(“Hello world from M/Macro!”);
return new byte[0];

Y ou execute it as a normal macro:

.plugin "test. pl ugi ns. macr os. M\yMacr o"
: MyMacro()

And get the expected output ‘Hello World from MyMacro!’. The ‘arguments’ parameter is the parameters
parsed to the macro. The result is returned as a byte array and the ‘engin€’ parameter is used to do additional
communication with the Kick Assembler engine. The interfaces of the two parameters are described in the fol-
lowing sections.

15.4. The IValue Interface

Objects that implements the interface 1V alue represents val ues like numbers, strings and booleans. The IValue
interface contains the following methods to extract information from the value:

Table 15.1. IValue Interface

Method Description

int getint(); Gets an integer from the value if possible, otherwise it
will give an error message.

Double getDoubl&(); Gets a double from the value if possible, otherwise it
will give an error message.
String getString(); Getsastring from the valueif possible, otherwiseit will

give an error message.

Boolean getBoolean(); Gets a Boolean from the value if possible, otherwise it
will give an error message.

List<IVaue> getList(); Getsat list of valuesif possible, otherwiseit will givean
error message. Thelistimplementssize(), get(i), isEmp-
ty() and iterator().

Boolean haslntRepresentation(); Tells if you can get an integer from the value. Every
number value can produce an integer. 3.2 will produce
3).

boolean hasDoubl eRepresentation(); Tellsif you can get a double from the value.

boolean hasStringRepresentation(); Tellsif you can get a string from the value.

boolean hasBooleanRepresentation(); Tellsif you can get a boolean from the value.

boolean hasListRepresentation(); Tellsif you can get alist from the value.

15.5. The IEngine Inteface

ThelEngineinterfaceisused to do additional communication to Kick Assembler. It has the following methods:

63

3rd Party Java plugins

Table 15.2. IEngine Interface

Method Description

File getFile(String filename); Opensafilewith the given filename. The assembler will
look for the file as it would look for a soucecode file.
If it isn’t present in the current directory, it will look in
the library directories. It will return null if the file can’t

be found.

File getCurrentDirectory(); Gets the current directory.

void print(String message); Prints a message to the screen. Works like the .print di-
rective.

void printNow(String message); Prints amessage to the screen. Workslike the .printnow
directive.

void error(String message); Prints an error message and stops execution. Workslike

the .error directive. Important! This method will throw
an AsmException which you have to pass through any
try-catch block used in your code.

15.6. Modifyer Plugins

Y ou can implement modifiers the same way as macros (See the modifier chapter for an explanation for these).
Theinterface looks like this:

public interface | Mdifier {
public String get Name();
byte[] execute(List<IMnoryBl ock> menoryBl ocks, |Value[] paraneters, |Engine
engi ne) ;

}

The only difference from the macro interface is the list of memory blocks. These are the blocks defined inside
the modify directive. The memory block objects contain the following functions:

Table 15.3. IMemoryBlock Interface

Method Description

int getStartAddress() The start address of the memory block.
byte[] getBytes() The assembled bytes of the memory block.

15.7. Plugin Archives

You can collect more plugins in one archive. The makes it possible to register them with only one plugin
directive. To create an archive you implement a class of the | Archive interface:

public interface |IArchive {
public List<Object> get Pl ugi nObj ects();

}

An implementation could look like this;

public class M/Archive inplenents |Archive{
@verride
public List<Object> getPlugi nObjects() {
Li st<bject> list = new ArrayLi st <Cbj ect >();
l'ist.add(new MyMacro());
l'ist.add(new MyModi fyer());
return list;

3rd Party Java plugins

The following plugin directive will then register both MyMacro and MyModifyer.

.plugin "test.plugins. archi ves. M/Archi ve"

65

Appendix A. Quick Reference

A.l. Command Line Options

Table A.1. Command Line Options

Option
-afo

Example
-afo

Description

Allows file output outside the output
dir.

Allow overlapping memory blocks.
With this option, overlapping memo-
ry blocks will produce awarning in-
stead of an error.

-asminfo

-asminfo al

Turn on exporting of assembleinfo

-asminfofile

-asminfofile myAsminfo.txt

Tells where to output the asminfo
file.

-binfile

-binfile

Setsthe output to beabinfileinstead
of aprg file. The difference between
abinand aprgfileisthat the binfile
doesn’t contain the two start address
bytes.

-bytedump

-bytebump

Dumps the assembled bytes in the
file ByteDump.txt together with the
code that generated them.

-bytedumpfile

-bytebumpfile myfile.txt

Same as -bytedump but with an argu-
ment specifying the name of thefile

-cfdfile

-cfdfile"../../MyConfig.Cfg"

Use additional configuration file
(likeKickAss.cfg). Supply thefileas
an absolute path, or a path relative
to the source file. You can have as
many additional config files as you
want.

-debug

-debug

For development use. Adds addition-
al debug info, like stacktraces, to the
output.

-define

-define DEBUG

Defines a preprocessor symbol.

-dtv

-dtv

Enables DTV opcodes.

-excludeillegal

-excludeillegal

Excludetheillegal opcodes from the
instruction set

-execute

-execute "x64 +sound"”

Executeagiven program with theas-
sembled file as argument. You can
use this to start a C64 emulator with
the assembled program if the assem-
bling is successful.

-executelog

-executelog execlog.txt

If set, this generates a logfile for the
output of the program executed using
the '-execute’ option.

-fillbyte

-fillbyte 255

Setsthebyte used to fill the space be-
tween memoryblocks in the prg file.

66

Quick Reference

Option Example Description

-libdir -libdir ../stdLib Defines a library path where the as-
sembler will look when it tries to
open external files.

-log -log logfile.txt Prints the output of the assembler to
alodfile.

-maxaddr -maxaddr 8191 Sets the upper limit for the memory,
default is 65535. Setting a negative
value means unlimited memory.

-mbfiles -mbfiles Onefilewill be saved for each mem-
ory block instead of one big file.

-noeval -noeval Parse the sourcecode but exit before
evaluation.

-0 -0 dots.prg Setsthe output file. Default isthein-
put filename with a‘.prg’ as suffix.

-odir -odir out Sets the output dir. Outputfiles will
beoutputinthisdir (or relativetothis
dir)

-pseudoc3x -pseudoc3x Enables semicolon between pseudo-
command arguments.

-replacefile -replacefile c:\source.asm c: | Replaces a given sourcefile with an-

\replacement.asm other everytimeit's referred.

-showmem -showmem Show a memory map after assem-
bling.

-symbolfile -symbolfile Genrates a .sym file with the re-
solved symboals. The file can be used
in other sources with the .import
source directive.

-symbolfiledir -symbolfiledir sources/symbolfiles | Specifies the folder in which the
symbolfile is written. If noneis giv-
en, its written next to the sourcefile.

-time -time Displays the assemble time.

-vicesymbols -vicesymbols Generates alabel filefor VICE.

-warningsoff -warningsoff Turns off warning messages.

‘name= The ‘2’ notation denotes string vari-

:Xx=34 :version=beta?2 :path="c:/C
64/"

ables passed to the script. They
can be accessed by using the ‘cmd-
LineVars hashtable which is avail-
able from the script.

A.2. Preprocessor Directives

Table A.2. Preprocessor directives

Preprocessor Directives

Example

Description

#define #define DEBUG Defines a preprocessor symbol.
#elif #elif TEST The combination of an #else and an

#if preprocessor directive.

67

Quick Reference

Preprocessor Directives Example Description

#else #else Used after an #if to start an el se block
which is executed if the condition is
false.

#endif #endif Marks the end of an #if/#else block.

#if #f IDEBUG Discardsthe sourcecode after the #if-
directive if the condition isfalse.

#import #import "file2.asm" Imports another sourcefile.

#importif #importif IDEBUG "file2.asm" Imports another sourcefileif the giv-

en expression is evaluated to true.

#importonce

#importonce

Make the assembler skip the current
fileif it has already been imported.

#undef

#undef DEBUG

Removes the definition of a pre-
processor symbol.

A.3. Assembler Directives

Table A.3. Directives

Directive Example Description

* *=$1000 Sets the memory position to a given
value.

aign .align $100 Aligns the memory position with
the given value. Ex. ".align $100' at
memory position $1234 will set the
position to $1300.

.assert .assert "Test 1",2+2,4 Assertsthat two expressions or code-
blocks are equal.

.asserterror .asserterror "Test 2", List().get(27) |Asserts that a given expression or
codeblock generates an error.

.by .by $01,$02,$03 Andiasfor '.byte.

.byte .byte $01,$02,$03 Outputs bytes.

.const .const DELAY=7 Defines a constant.

.define .definewidth, height {...} Executes a block of directives in
'functionmode' (faster) to define val-
Ues.

disk (disk [..disk pararamters..] {..filepa- | Creates a d64 imagefile.

rameters..}

.dw .dw $12341234 An diasfor ".dword'.

.dword .dword $12341234 Outputs doublewords (4 byte val-
ues).

.encoding .encoding "screencode_upper" Sets the character encoding.

.enum .enum { on, off} Defines a series of constants.

.error .error "not good!" Creates an user raised error.

.errorif .errorif x>10 "not good!" Creates an user raised error if condi-
tion is evaluated to true.

.eval .eval x=x+y/2 Evaluates a script expression.

68

Quick Reference

Directive Example Description

file file [name="myfile.prg" | Createsaprg or binfilefromthe giv-
segments="Code, Data’] en segments.

filemodify filemodify Encrypt(33) Modify the output of the current

source file with the given modifier.

filenamespace

filenamespace myspace

Creates a namespace for al the
following directives in the current
sourcefile.

fill

fill 10, i*2

Fillsanumber of byteswiththevalue
of agiven expression.

for for(var i;i<10;i++) {...} Creates afor loop.

function function area(h,w) {..} Defines afunction.

Af if(x>10) {...} Executes code if the given condition
istrue.

.import binary .import binary "Music.bin" Imports a binary file.

.import c64 .import c64 "Music.c64" Imports a c64 files. Same as ".import

binary', but ignores the two address
bytes at the start of thefile.

.import source

.import source "MyLib.asm"

Imports another source file. (Depri-
cated, use #import instead)

.import text .mport text "scroll.txt" Imports atext file.

.importonce .importonce Make the assembler skip the current
file if it has aready been import-
ed. (Depricated, use #importoncein-
stead)

Jabel Jabel color=$d020 Assignsagivenexpressiontoalabel.

.macro .macro BasicUpstart() { ...} Defines amacro.

.memblock .memblock "New block" Defines a new memoryblock at the
current memoryposition.

.modify .modify Encrypt(27) { ...} Modifies the output of a codeblock
using the given modifier.

.namespace .namespace myspace{ ..} Creates alocal namespace.

.pc .pc=$1000 Same as *='

.plugin .plugin "plugins.macros.MyMacro" | Tellsthe assembler to look for aplu-
gin at the given java-package path.

print Jprint "Hello" Prints amessage to the consolein the
last pass.

.printnow .printnow "Hello now" Prints a message to the console im-
mediately.

.pseudocommand .pseudocommand mov src:tar {...} | Defines a pseudocommand.

.pseudopc .pseudopc $2000{...} Sets the program counter to some-
thing else than the actual memory
position.

.return .return 27 Used inside functionsto return aval-
ue.

.segment .segment Data"My Data" Switches to another segment.

.segmentdef .segmentdef Data [start=$1000] Defines a segment.

69

Quick Reference

Directive Example Description

.Struct Struct Point {x,y} Creates a user defined structure.

te te"hello" An diasfor "text'.

text text "hello" Dumps text bytes to memory.

var var x=27 Defines avariable.

.while while(i<10) {...} Creates awhile loop.

W0 .wo $1000,$1012 Andiasfor ".word'

.word .word $1000,$1012 Outputs words (two bytes values),
.Zp .zp { label: .byte0 ...} Marks unresolved labels as being in

the zeropage.

A.4. Value Types
Table A.4. Value Types

Type Example Description

65xxArgument ($10),y A value that defines an argument
given to amnemnonic.

BinaryFile LoadBinary("file.bin", ") A value containing byte data.

Boolean true Either true or false.

Char X' A character.

Hashtable Hashtabl () A value representing a hashtable.

List List() A list value.

Matrix Matrix() Represents a 4x4 matrix.

Null null A null value.

Number 274 A floating point number.

OutputFile createFile("breakpoints.txt") An value representing an output file.

Picture L oadPicture("blob.gif") The contents of aloaded picture.

SidFile LoadSid("music.sid") The contents of asid file.

String "Hello" A string value.

Struct MyStruct(1,2) Represents a user defined structure.

Vector Vector(1,2,3) A 3d vector value.

Appendix B. Technical Detalls

In Kick Assembler 3 some rather advanced techniques have been implemented to make the assembling more
flexible and correct. I'll describe some of the main points here. Y OU DON'T NEED TO KNOW THIS, but if you
are curious about technical details then read on.

B.1. The flexible Parse Algorithm

Kick Assembler 3 uses aflexible pass algorithm, which parses each assembler command or directive as much
as possible in each pass. Some commands can be finished in first pass, such as Ida #10 or sta $1000. But if a
command depends on information not yet given, like‘jmp routine’ where the routine label hasn't been defined yet,
an extra passis required. Kick Assembler keeps executing passes until the assembling is finished or no progress
has been made. Y ou can write programs that only need one pass, but most programs will need two or more. This
approach is more flexible and gives advantages over normal fixed pass assembling. All directives don't haveto be
in the same phase of assembling, which gives some nice possibilities for future directives.

B.2. Recording of Side Effects

Side effects of directives are now recorded and replayed the subsequent passes. Consider the following eval
directive: .eval a=[5+8/2+1]* 10.In thefirst passthe calculation [5+8/2 + 1]* 10 will be executed and find the result
100, which will be assigned to a. In the next pass no calculation is done, only the side effect (a=100) is executed.
This speeds up programs with heavy scripting, since the script only has to execute once.

B.3. Function Mode and Asm Mode

Kick assembler has two modes for executing directives. ‘ Function Mode' is used when the directive is placed
inside a function or .define directive, otherwise ‘Asm Mode' is used. ‘Function Mode' is executed fast but is
restricted to script commands only (.var, .const, .for, etc.), while* Asm Mode’' can handleall directives and records
the side effects as described in previous section. All evaluation startsin ‘ Asm Mode' and enters ‘ Function Mode'
if you get inside the body afunction or .define directive. This meansthat at some point thereis always a directive
that records the result of the evaluation.

B.4. Invalid Value Calculations

Invalid values occur when the information used to calculate a value that isn't available yet. Usually this starts
with an unresolved label value, which is defined later in the source code. Normally you would stop assembling
the current directive once you reach an invalid value, but that might leave out some side effects you did intend
to happen, so instead of stopping, the assembler now carries on operating on the invalid values. So an unresolved
label isjust an unresolved Number value. If you add two number values and one of them isinvalid then the result
will be another invalid number value. If you compare two invalid numbers then you get an invalid boolean and
so forth. This helpsto track down which values to invalidate. If for example you use an invalid number as index
in aset function on alist, you must invalidate the whole list since you don't know which element is overwritten.
Some examples of invalid value calculations:

4+| nval i dNunmber -> I nval i dNunber

Inval i dNunber !'= 5 -> | nvalidBool ean

myLi st.set (3, InvalidNunber) -> [?,?, I nvalidNunber]
myLi st. set (I nval i dNunber, “Hello”) -> InvalidLi st
myLi st . set (4+4*1 nval i dNunber, “Hello”) -> InvalidLi st

71

Appendix C. Going from Version 3.x
to 4.0

C.1. The new features

The parser have been rewritten which made some new features possible:
1. You can now use *=$1000 like in good old Turbo Assembler.

2. You cannow use soft parenthesis. Kick Assembler will know by the context when it meansan indirect adressing
mode and when its anormal parenthesis.

3. A preprocessor have been implemented. Y ou can now use the commands #define, #undefine, #if, #else, #elif
and #endif (Those who know the C# preprocessor will be familiar with these).

4. There are also preprocessor commands for importing source: #import, #mportif, #importonce. #mport and
#importonce works as the directives known from version 3.x. , but works better together with the preprocessor.
#importif supports conditional imports as a simple oneliner.

5. The colon in front of macro and pseudocommand calls are now optional.

6. You can now add an optional ;" after directives and mnemonics. This is usefull if you are use to program
languages like C++/Java or C# where these are required.

7. Kick Assembler now report multiple errors in the parsing phase instead of just the first.
8. Kick Assembler can now report syntax elements back to editors. (IN PROGRESS)

9. Kick Assembler can now report syntax errors back to editors, without starting to evaluate the code. (IN PRO-
GRESS)

10.The new parser is faster. The Kick Assembler test suite now assembles in less than half of the time it took
when using v3.40.

The scoping/namespace system has been upgraded:

1. Functions, Macros and PseudoCommands are now put in the current namespace when defined. (In 3.x only
symbols where scoped)

2. Namespaces can now be reused (Several files can use the same namespace without getting a ‘symbol already
defined' error).

3. Thereisnow a getNamespace() function that tells the current namespace.

4. Use'@' as prefix when defining a symbol/function/macro/pseudocommand to put it in the root-scope or root-
namespace.

5. Use'@' as prefix when referencing a symbol/function/macro/pseudocommand to look it up in the root-scope
or root-namespace.

6. NOTICE: Thereare currently no way of seeing functions/macros/pseudocommands from the outside of aname-
space so place your public library functionsin the root namespace.

7. Import now always imports to the root scope (Doesn't use the scope at the import call as parent scope)

8. Function/macro/pseudocommand calls now has the definition scope (where the function/macro/pseudocom-
mand is defined) as parent scope during the call. Thisis consistent with most language like Java, C# etc.

72

Going from Version 3.x to 4.0

9. All references to a symbol/function/macro/pseudocommand is now resolved in the prepass. This means you
will get errors for misspelled symbols at once. It also means that you can get errors from non-executed code.

10.Resolving symbols in the prepass’ gives the same or dightly slower assemble times for performance light
sources, but for heavy calculationsit is much faster (Example: The fractal2 example from v3.x assembles 38%
faster with Kick Assembler 4)

Other news are:
1. Thereisnow a.while directive
2. Thereisnow updated ‘quick reference' appendix of options, preprocessor directives, directives and value types.
3. Thereisnow an .encoding directive to switch between petscii/screencode encoding and uppercase/mixedcase.
4. Lines starting with # in KickAss.cfg are now ignored.
5. The source in the manual have been updated
6. The example suite has been rewritten (Its worth alook)

7. A converter to help convert from v3.x to 4.x isincluded in the distributed zip-file.

C.2. Differences in syntax

There is a small change in the syntax between version 3.x and 4.x, which means that some code might not
compile right away - but don't worry, we made a converter to convert sources to the new syntax and have a
command line option that will make most code run.

In Kick Assembler 3.x the assembler automatically knows when one command ends and another begins. This
means you can write several commands in one line like this:

sei |da #$1b sta $d011 |da #$32 sta $d012 ‘

In version 4.x you have to separate commands by either aline shift or asemicolon. So in version 4.x the above
looks like this:

sei; |da #$1b; sta $d011; |da #$32; sta $d012 ‘

In general, thisis not a problem since you usually put each mnemonic on a separate line. If you want a command
to span severd lines, use a parenthesis (hard or soft). Since KickAssembler balances the parenthesis sets, only
newlines on the outer level will terminate the command so you can write like this:

| da #(
7 * cal cul at eSonet hi ng(a, b)
+ 3 * cal cul at eSomeMore(x, y, z)

The use of semicolon to terminate commands collide with the old pseudo commands which use the semicolon to
separate its arguments. To be compatible with old pseudo commands, use the -pseudo3x option at the command
line. Y ouwill not be able to write several commands after a pseudocommand call, but your old code will compile.
A better option isto convert your code to the new syntax where al semicolons are changed to normal colons. (Y ou
can use the converter enclosed in the KickAssembler zip file):

/! Pseudocomand calls in V3.x
:nmov #10 ; data, x

/! Pseudocomand calls in V4. x
mov #10 : data, x /'l The colon in front is now optional

73

Going from Version 3.x to 4.0

C.3. Difference in behavior

Since all references is now checked prepass, dead code can cause errors. For example, a function that never
gets called will now generate an error:

.function nyFuncl() {
.var x = unknownSynbol ; // Error: Undefined synbol

}

If-directives inside functions/defines is now scoped, meaning you can't do like this anymore (This is aready
the case for .if directives outside functions/defines):

.function nyFuncl(flag) {

i f (flag)
.var nmessage = "flag is true"
el se
.var nmessage = "flag is fal se"
.print nessage // Error - 'nessage' is unknown

C.4. Converting 3.x sources

To make the transition to from version 3.x to 4 easy, use the converter to convert old source files.

First, take a backup of your source before converting. The source files will be overwritten so its good to have
acopy of the original source files. In case there comes updates to the converter, you need the origina v3 source
code to convert again.

Step one in converting is starting up the converter. This is done by the following command:

java -jar Ki ckAss3To4Converter.jar

Step two is selecting what to convert. Thisis done by checking the check boxes in the upper panel. The ones
already checked are meant to be converted (Y ou should have a good reason to un check them). The non checked
('Replace .pc with *") are cosmetic changes.

Step threein converting is selecting which source files to convert. To do so, use the 3 buttons:
1. 'Add Files - Gives you a dialog from which you can pick individual sourcefiles.

2. 'Add SourceDir' - Gives you a dialog from which you can add source files of a given type(s) from a source
directory and it's subdirectories.

3. 'Removefiles - Removes the selected files of the current file list.

The selected fileswill appear in the list in the center.
When done, execute the final step by pressing the 'Convert' button, and the conversion will be executed.
The converter will take care of most of the transitions. Currently know issues are:

1. If acommand spans more than one line and doesn't contain akind of parenthesis (soft, hard or curly), you might
have to set one as explained in the previous section.

74

	Kick Assembler Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Running the Assembler
	2.2. An Example Interrupt
	2.3. Configuring the Assembler

	Chapter 3. Basic Assembler Functionality
	3.1. Mnemonics
	3.2. Argument Types
	3.3. Number formats
	3.4. Labels, Arguments Labels and Multi Labels
	3.5. Memory Directives
	3.6. Data Directives
	3.7. Encoding
	3.8. Importing source code
	3.9. Importing data
	3.10. Comments
	3.11. Console Output

	Chapter 4. Introducing the Script Language
	4.1. Expressions
	4.2. Variables, Constants and User Defined Labels
	4.3. Scoping
	4.4. Numeric Values
	4.5. Parentheses
	4.6. String Values
	4.7. Char Values
	4.8. The Math Library

	Chapter 5. Branching and Looping
	5.1. Boolean Values
	5.2. The .if directive
	5.3. Question mark if's
	5.4. The .for directive
	5.5. The .while directive
	5.6. Optimization Considerations when using Loops

	Chapter 6. Data Structures
	6.1. User Defined Structures
	6.2. List Values
	6.3. Working with Mutable Values
	6.4. Hashtable Values

	Chapter 7. Functions and Macros
	7.1. Functions
	7.2. Macros
	7.3. Pseudo Commands

	Chapter 8. Preprocessor
	8.1. Defining preprocessor symbols
	8.2. Deciding what gets included
	8.3. Importing files
	8.4. List of preprocessor directives
	8.5. Boolean operators

	Chapter 9. Scopes and Namespaces
	9.1. Scopes
	9.2. Namespaces
	9.3. Scoping hierarchy
	9.4. The Namespace Directives
	9.5. Escaping the current scope or namespace
	9.6. Label Scopes
	9.7. Accessing Local Labels of Macros and Pseudocommands
	9.8. Accessing Local Labels of For / While loops
	9.9. Accessing Local Labels of if's

	Chapter 10. Import and Export
	10.1. Passing Command Line Arguments to the Script
	10.2. Import of Binary Files
	10.3. Import of SID Files
	10.4. Converting Graphics
	10.5. Writing to User Defined Files
	10.6. Exporting Labels to other Sourcefiles
	10.7. Exporting Labels to VICE

	Chapter 11. Modifiers
	11.1. Modify Directives

	Chapter 12. Special Features
	12.1. Name and path of the sourcefile
	12.2. Basic Upstart Program
	12.3. Opcode Constants
	12.4. Colour Constants
	12.5. Making 3D Calculations

	Chapter 13. Assemble Information
	13.1. The AsmInfo option
	13.2. Realtime feedback from the assembler
	13.3. The AsmInfo file format
	13.4. The sections
	13.4.1. Libraries section
	13.4.2. Directives section
	13.4.3. Preprocessor directives section
	13.4.4. Files section
	13.4.5. Syntax section
	13.4.6. Errors section

	Chapter 14. Testing
	14.1. Asserting expressions
	14.2. Asserting errors in expressions
	14.3. Asserting code
	14.4. Asserting errors in code

	Chapter 15. 3rd Party Java plugins
	15.1. The Test Project
	15.2. Registering your Plugins
	15.3. Macro Plugins
	15.4. The IValue Interface
	15.5. The IEngine Inteface
	15.6. Modifyer Plugins
	15.7. Plugin Archives

	Appendix A. Quick Reference
	A.1. Command Line Options
	A.2. Preprocessor Directives
	A.3. Assembler Directives
	A.4. Value Types

	Appendix B. Technical Details
	B.1. The flexible Parse Algorithm
	B.2. Recording of Side Effects
	B.3. Function Mode and Asm Mode
	B.4. Invalid Value Calculations

	Appendix C. Going from Version 3.x to 4.0
	C.1. The new features
	C.2. Differences in syntax
	C.3. Difference in behavior
	C.4. Converting 3.x sources

