CSAM Image Quantizer – © 2007 Algotech Productions

INTRODUCTION
Full motion video on a stock C64 is a rarity, not due to the processing power of the machine but rather the limited 64k of memory in the machine. A standard multicolour bitmap on the C64 takes up 10k of ram/disk space. A few of these are required per second to give motion and after 1 to 2 seconds, the show is over.

This PC application (Character Selection And Match) transforms full screen image sequences into 1k of data. This data relies on a universal character buffer which only uses 2k of ram.

THE APPLICATION

Below is a screenshot of the application as well as a brief description of what each option does.

[image: image1.jpg]foaded Diisabrinademol03.brp. 7

CODEBOOK OPTIONS

New Codebook

This option clears the codebook, analyses the current frame and places the characters it thinks are suitable to the codebook area

Append to codebook

This option is useful for example when loading another frame and then to appending data to the codebook.

Clear Codebook

Clears the codebook

DITHER OPTIONS

None

No dither. Converts the image to 4 shades of grey

Ordered dither

Utilises pattern dither to give the impression of more shades from a distance. Recommended

Additive dither

To be used in conjunction with the above. Dithers and lightens the image. If the image is too light, then deselect this option
MISC

Grid

Turns on the grid on the right preview panel. This option is useful when manually selecting characters to place in the codebook

LOAD OPTIONS

Load Image

Loads either a Bitmap or JPEG image of your choice

Load Codebook

Loads previously saved codebook data

SAVE OPTIONS

Save Codebook

Converts and saves the codebook. This data is now a 2k character block definition (C64 format). It can be included directly into your own C64 programs. It is exactly 2048 bytes in size

Save Screen data
Saves current screen data. This data is exactly 1000 bytes (40x25) each byte points to a charblock in the 2k codebook definition. This data can be included directly in your own c64 programs

FRAME NUMBER

Up to 64 frames can be selected and processed.

DETAILED EXPLANATION

The program works by analysing each 4x8 block of the image and comparing it with 4x8 definitions in the codebook. If there is no similar match in the codebook, it enters the data in the codebook, it then moves onto the next 4x8 block. The similarity check can be adjusted by changing the threshold setting. The higher the threshold, the less similar characters are entered in the codebook
Once data is in the codebook, the image can be processed. Pressing the ‘Process’ button will then compare each 4x8 block in the image to each entry in the codebook, the closest match in the codebook will then substitute the original 4x8 block.

SINGLE IMAGES

Another use of this program is merely to convert bitmap images to character images. For an exact (or near exact copy) use a threshold value of 0. if the image consists of complex data (with barely any gaps or repeating sections, increase the threshold value and process again until you get a decent image.

Finally if you wish to manually enter a character into the codebook due to empty gap or other data sections not transferred, you can turn the grid on and click on the required character to place it onto the codebook.

The 1k screen data and codebook can then be saved and then used in your own c64 programs

ANIMATIONS

For a 16 frame animation (example), the quick and easy way is something such as the following…

· Use a high threshold value

· Import first frame and create a new codebook, process image
· Increment frame

· Load next frame and append codebook, process image

· Increment frame

· Load next frame and append codebook, etc etc

What this will result in will be 2k of graphic data which consists of the main important sections of all the frames. If there is an overflow, then increase the threshold value and process the frames again.

Now each frame would be reloaded, the relevant frame selected. (e.g. if frame 2 (truecolor image) is reloaded, select frame two. And click process again.

The reason for reprocessing the data is that there are now more codebook entries and the routine will be able to improve the quality due to there being more different graphic patterns available.

If there are any more blank codebook entries, you can manually place characters to include in the codebook entry.

It is also possible to select any one of the 256 characters in the codebook entry and to manually overwrite it with a chosen character in the preview window

Once the codebook is full, reprocess all the images again and save.

MANUAL ANIMATION PROCESSING
For ultimate quality (until the brute force vector quantisation is ready), you can manually import frames and select which characters you want to include in the codebook, a character block (in the top right preview screen can be clicked on, and then the ‘process’ button can be used to preview the quality, if there seems to be minimal change, the codebook entry can be overwritten with another character.

This can be a time-consuming process but quality will be higher than the previous method

HINTS AND TIPS
· Use grid mode wherever possible.

· When moving the mouse over the preview screen, pay attention to the square block cursor in the preview underneath, the square block can be moved to an area which seems to contain the most errors and clicked on. Pressing ‘process’ will then substitute that charblock which had the errors with the original 4x8 block (and amend any other areas of the image if possible)
TECHNICAL INFO

The processing of the image frames is based on Vector Quantisation. The vector points to a lookup table which consists of the chosen image data. Most video compression routines based on vector quantisation deal with 4x4 blocks, but there is not much difference in the routine if it is adjusted to use 4x8, 8x8, etc.
The main problem with video based vector quantisation is the huge amount of processing time required. Compress a video using the Cinepak codec in windows for example and note the time it takes to compress. Luckily there are many different implementations of vector quantisation
Decoding is blistering fast. On the C64 it’s even faster as absolutely no decoding needs to be done at all! The 1k data points to the required codebook entry and the C64’s graphic chip does the rest (due to the C64’s tile based graphic mode), just a simple $d018/$dd00 toggle to switch the relevant area. Or merely use double buffering and copy 1k of data over to the required place.

There is nothing stopping from having multiple character sets as well. For example you can have a single 2k char bank for every 8 frames, etc

TO DO

I am not sure whether to add any more features to this program. This program was initially created for my own use. However, who knows.. more features may be added according to feedback including maybe the video vector quantizer.

CONTACT

For comments and criticisms you can contact me at the following email address

thealgorithm@msn.com
�

Page 1 of 4

