Infiltrator Disassembler Version 1.0 Manual

Sé,czlet Lab Productions - Excess

filcrator

© Gerald Hinder

Page 1 of 39 Pages

Table of Contents

L INEEOAUCTION. ..ottt ettt ettt et e et e e sbe e ate e aeeeabeesseeenseenseeennsaeesensseeesnnsaeannns 4
O 0 35 30 TS o) i OSSR PPRRR 4

2 Getting Started (SROWCASE)......ccviiriieeiieiieeie ettt ettt et e st e e e st e ebeeseaeeabeessaeeesseeesensaeeeans 5
2.1 IMPOTEING @ FAlC..cuiiiiiiiieiieee ettt ettt e e et e e e e e e s saaa e e e e s eenssaaeeeeennnns 5

3 Standard SUPPOTE TOOIS.ceuiiiiieiieeie ettt ettt ettt et e st e e bt estaeeseessaeeeensaeesensseaesnnsaaeenns 6
3.1 UNNOLY BULIONS. ..ccciiiiiiiiieciieece ettt ettt e et e e s e e etaeesnsaeesnsaeesnssnneaeaeannns 6
3.2 SPrite Pad (SPR)....oiiiiiiieiee ettt ettt ettt ettt et e e e abaeeeeneee 7
3.3 BItMAPS (BMP)...ceeieeeeeeeeee ettt ettt ettt e e et e e eaae e e taaaaeeeennns 8
3.4 Charsets and SCreens (C&S).....ooiiii ettt ettt e et eeeveeesabeeeeareeerseeenaseeaeenans 9
3.5 Sine ANALYSIS (SINE) .. .uiiiiiiieeiiieee ettt et e et e e s rae e s taa e e esnnnraaeeees 10
3.6 HeX Pad (HEX).....cooiiiieiieieee ettt sttt st sttt ettt 12

4 LeKKET BIatWUISE.....ceiiiiiiiiiieiiieciiee ettt e ettt e et e e st eesatee e saeeessaeesssaeessseesnssaesssseesnnsssseeeesannes 13
4.1 RIP OFF KOALA....oueiiiiieiii ettt ettt e st e e teesaaeesbeeseneensaesnseenseas 13
4.2 Sine Analysis (More typical ShAPES)......cccuiieiuiiiiiiiieie et 15
BBt SAMIPIES.....ueiieiiiiiiieiieie ettt ettt ettt et e et e et e st e e bt e e sbe et e e ate e bt e snbeenbeeeennaeas 15
Speed OptiMIZEd COC........ccciuiiieiieeiie ettt e et e e e et e e eaaeeesaeessaeesssaeennnns 16

A3 CRAP. ..ottt ettt ettt h et et h et eat e nae et e b 18

5 THE DiSASSEIMDICTeieiiiiiiiiie ettt e ste et e et e e et e e e ateeesbeeesaaeeeeeennsnsaeeaeeeennssnees 19
S5.1THE LabEl CONCEPL......eieeieeiiieiieeiiteiee ettt ettt et ettt et ete et e e b e e saeeabeesseeenbeessaesnsaeensaeas 19
The good OK, the bad BAD, and the ugly JAM........ccccooviiiiiiiiie e 20

5.2 Options and SearChfUNCHIONS.c.ueiiuierieeiierie ettt ettt ettt beesiae et eeensaeeeenereeas 20
IR BT 1 (o] 11§] £ SRS PURPPP 22
5.4 PIEVIEW WINAOW.....cuiiiiiiiiiieiie ettt ettt ettt e ettt e e be e bt e s b e e seeenbeesseeenseessaesnseeenneeas 24
T I A 11 - o PR 25
5.6 POP-UP MENU (BASICS)...cuvievieeiiieiieeiiieiie et eiteete et e teettesteeteesiaeebeesaaeenseessseenseessaesnseenseens 26
5.7 Code Shaker and Illegal Shaker............cccueiiiiiiiiiiiiiieceeee e 27
5.8 Quicksearch and the QUicKSearchlist...........c..cccvuiiiiiiiiiiieciie e 28
IO BT o) (S 1 T D 1 v USSP SRSPRPR 29

0 SHOWCASE.eeeutietieeiiteite ettt ettt e et et e et e et e eteesbeeesbeessteeateesseeeab e e seeeaseesaeenbeeseeeataeeennsaeeeennneeas 30
6.1 Fill the EXCIUA@A LiSt.....ccciuiiiiiiieeiieecee ettt ettt e et e et e e e b e e enaeeennaaeeeas 30
6.2 Solve the BADS and JAMS.......oooiiiiiiiiieiieeie ettt ettt ettt site e e sabe e esnsseeeennneeas 30
6.3 Understand the Program Framework...........cccoooiiiiiiiieiiiecieeeeeece e 32
6.4 Get the IKARI LOZO0 ShaKET......cc.ciiiiiiiiieiieie et e 34
6.5 Get the Logo Flash ROULING.........cccuiiiiiiieiiiicciie et e 35
6.6 Get the TSM Y-Movement ROULINE.cccueiiiiiiiiiieiieeieee et 36
6.7 Get the Scroll Text FIasher........cccviiiiiiiiiiieee et 37

AN o) 1S3 114§ b SO PSPPSR 38
8 B 37 O T USSR 38
7.2 KNOWI BUEZS.....oiiiiiieiie ettt ettt et e st e e st e e s et ta e e e e s eenabbaeeeees 38
7.3 "AS IS" Warranty StatemENT.........c.uveeeeriuiiiieiiiieeecieee et e e e e e e e e e s e e e e rarreeeeeeeeas 39

Page 2 of 39 Pages

List Of Abbreviations (uncompleted)

ASCII
BCS
BEQ

CIA

CPU
CSDb

et seq.
etc.

IDE

IRQ

FLI

JSR
KERNAL
MOS
NTSC
OP-Code
PAL
PEBKAC
PETSCII

American Standard Code for Information Interchange
Branch on Carryflag Set

Branch on EQual

Complex Interface Adapter

Central Processing Unit

The C-64 Scene Database

and the following

and so on

Integrated Development Environment
Interrupt Request

Flexible Line Interpretation

Jump to SubRoutine

Keyboard Entry Read, Network, And Link
Metal Oxide Semiconductor

National Television Systems Committee
OPeration-Code

Phase Alternation Line

Problem Exists Between Keyboard And Chair

Personal Electronic Transactor Standard Code of Information Interchange

Rapid Application Development
Random Access Memory

Red Green Blue

Read Only Memory

Sound Interface Device

The Shaolin Monastery

Ultimate Packer for eXecuteables
Video Interface Controller

Versatile Commodore Emulator

Page 3 of 39 Pages

1 Introduction

Once upon a time everyone was eager to find sprites, bitmaps, music or code somewhere in the
RAM. Yea, we used the “Action Replay” and other cheat technology to get what we wanted.
Infiltrator comes with those basic functionalities including some hopefully nice updates.

The disassembler uses forward interpretation with all the implied problems of this method. The
basic concept is to process the complete memory, that’s why you can import PRG files as well as
VICE snapshot files. Using VICE snapshots will naturally result in a lot of false interpretations.
The included set of tools and methods may help you to master them.

Please note that some support tools where made a long time ago, so they may not have all comfort
you know from somewhere else(sprite animations, etc.). The primary purpose of these tools is to
help identifying memory areas as graphics, code, etc.

For quick results on your side the manual refers to several programs from different cracking / demo
groups using the VICE 2.3 version. Getting these releases in your hands is recommended.
Download the latest VICE version here: http://vice-emu.sourceforge.net/

Requirements: You should have at least basic knowledge of all MOS Technology chips and a
standard computer using the Microsoft Windows XP ServicePack 3 operation system. The software
is not tested on any 64 bit operating system yet. You are welcome to try on Vista / Windows 7 and
submit any results to me.

Porting requests: The application is programmed in the Lazarus IDE using standard components
only. It should be possible to compile the code-lines on various platforms. If you like to volunteer
for the job, I will be very pleased. However, give me some time to wait and react on major bugs
reported by someone in the first place(plus clean up some source crap).

You are welcome to drop any comment or request to my CSDb mailbox. Search for user
RHX / Excess / Secret Lab Productions (SLP)

Cheers,
Gerald

1.1 Terms of Use
Copyright (C) 2008-2011 Gerald Hinder

All rights reserved. This program may be used freely, and you are welcome to redistribute it. This
program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; read
the “AS IS” Warranty Statement for details (appendix).

Page 4 of 39 Pages

http://vice-emu.sourceforge.net/

2 Getting Started (Showcase)

For the showcase I opted the “Judge Dredd” crack intro from “IKARI & TALENT + TSM”. Oh no,
why this one...?! Because it is less complex which makes it perfect for a showcase. In addition, it
features many visual standard techniques you meet in most programs. In case you did not have the
release, grab it here: http://noname.c64.org/csdb/release/?id=17220.

Once you have loaded the crack using VICE 2.3, the emulator shows you this neat old school intro.

S e e FTw T

esents
Jucige v .
Craclue= = 200418

T Ty Ii==4'r 1-:.1,1—-.-1'--57 Ty
- i e | |

Save a VICE snapshot on your hard disk:

VICE: C64 emulator at 100% speed, 50 fps
File Edit

8=

S Opkions Setkings Language Help
Load snapshot image. ..
Save snapshok image. ..

Load quicksnapshat image Alk+L

2.1 Importing a File

Simply choose the file type (VICE for the showcase) and select the snapshot you saved before.
Depending on the import type, you may get some additional information.

@ Infiltrator 1.0

File Information

O DoDmeE

little Ripper fzing ¥ICE-Snapshot:

0000 £0000 I:vInfiltrator)3howcasesh Ikari+Talent+T3M Intro.wst
RaM-Range: 0000-5FFFF

@8N OPRE |l ators (A/%/T): 7F 08 28 with CPU at: §2647

.

Page 5 of 39 Pages

http://noname.c64.org/csdb/release/?id=17220

3 Standard Support Tools

Before pushing any buttons, you should always do some preliminary considerations about any
program you want to rape. In this case you can expect to find the following:

* the “TSM” sprites (having x and y movements)

* abitmap font (charset) for the scroll text (“This Game Was ...”)

* the scroll text data

* the charset(s) of IKARI and TALENT logos (probably all in one)

* char data tables of the logos (displayed with some x-sine movement)
* the main screen where everything is displayed

* the music

e some sine for the movements

The main objective is to identify most of these program parts. Later, you can advice the
disassembler to ignore parts of the memory, that will reduce errors and false friends.

3.1 Unholy Buttons

This is for all people who don't care about disassembling, but just want to rip off something. You
may already stumbled upon some of these buttons.

* Export as BMP

* Export (little Ripper)

* Make KOALA (see chapter 4)

* Play Data as Wave (see chapter 4)
* Save Data as Wave (see chapter 4)

Export as BMP: Saves the currently shown graphic in a bitmap file (RAD tools, I love you!). You
may use Gimp & Adobe products plus Kickass for something bad.

Export (little Ripper): Saves the specified RAM range to a file. Depending on the chosen file type
you must enter a valid save address, too. Here is an example how to save the screen data to a new
address.

little Ripper Saving Data to File:
£0400 $0300 PAM-Fandge: $0400-50500
Mode: Progam - Saveaddress: 1000
OEIN I:yInfiltrator,3howcases Introicreen.pry
£1000

Tip: You can't re-import binary files since the memory allocation is missing. You can still use binary
files in your Kickass code.

Tip: Make sure to write the correct suffix in all save dialogs (“.prg”, “.bin”, “.bmp”), [haven't
implemented automatism routines for them.

Page 6 of 39 Pages

3.2 Sprite Pad (SPR)
Select this button to get there:

Simply choose the memory area you want to display. The multicolored “TSM” sprites can be found
at $2400 - $25FF and are build out of eight single sprites. You should remember this memory range

for the disassembling showcase job(chapter 6).

Tip: The “TSM” sprites memory position(VIC Bank I) indicates that other graphics and the main

screen can be found there($0000 - $3FFF).

& Sprites

Single Calor | Mulki Colar

Background Color:

M cElack w $0000 | 0040
Colors 1-3:
$2000
B Custom ..
| | -
1 cliellow w
$£2400
I el
Memory:
$0000 - $0FFF a2 :
1000 - $1FFF | $2s00 i
$3000 - $3FFF
$4000 - $4FFF $£2800
$5000 - $5FFF
46000 - $6FFF .
$7000 - $7FFF 2800 E
$000 - $5FFF z
Q000 - $9FFF W 2 .
— e E TH
| s
[Export as BMP] £ZE00 E
-H—:-

$0050

B9=e9

$00CO 40100 0140 $0180 $01CO0

iR
ot
i

i
.

i
pin
e
i
P

BE N -

-
-
==
e
=3
==
s,

E

Page 7 of 39 Pages

3.3 Bitmaps (BMP)
Select this button to get there:

You know the selection procedure, so let's have the results only:
* char based graphic at $0800 et seq. (exact size unknown yet)

» font bitmap is located at $2000 et seq. (exact size unknown yet)

=> both has to be verified for the disassembling!
Tip: See chapter 4 for the “Bitmaps Multicolor (Koala)” tab.

& Bitmaps

Bitmaps Single Color | Bitmaps Multicolor Char | Eitmaps Mulkicalar (Koala)
Background: Color 1: = I =~
B clicray w

— Color 2:
$0000 - &
$2000 - $3F40 O cMedGray
$4000 - $5F40
46000 - $7F40 Color 3:

£8000 - $9F40
$A000 - $EF40
$C000 - $DF40
$E000 - $FF40

[clwhite "

[-----------4 [Export as BMP]

& Bitmaps

Bitmaps Single Color | Bitmaps Multicolor Char || Bitmaps Multicolor (Koala)

EalhCcde Faly il LMo oars T iz SIS R T
Background: Color: 3 oE e snidsaseTRg. ; S5 HBEDEFEI-_I_I_AKLHND
_ PaRs T 7 TR e T e
] clsikver w clElue w naifEf

FIEEE: .ot =xnok: S
Memory:]
0o00 - £1F40

£4000 - $5F40
$6000 - $7F40
$8000 - $9F40
$A000 - $EF40
$C000 - $DF40
$E000 - $FF40

[------------] [Expott as BMP]

Page 8 of 39 Pages

3.4 Charsets and Screens (C&S)
Select this button to get there:

Based on the findings made before it's obvious to search in VIC(RAM) Bank I ($0000 to $3FFF).
Search for the screen using the identified charsets, results:

¢ standard screen is used at $0400

* IKARI and TALENT logos using the same charset

There's no wow function here, so let's continue.

@ Charsets and Screens

RAM Bank:

Screen:

$0500-$0BE7
$0C00-$0FE7
$1000-$13E7
$1400-$17E7
$1500-$1BE7
$1C00-$1FE7
$2000-$23E7
$2400-$27E7
$2500-$2BE7
$2C00-$2FE7

Screen and Charset | Single Colar

$0000 - $3FFF w

Background:
I clElue w

Charset:

EDDDD-EDSE? A EDDDD-ED?FF

$1000-$17FF
$1500-$1FFF
$2000-$27FF
$2500-$2FFF
$3000-$37FF
$3500-$3FFF

([T

EEX

Screen and Charset | Mulk Color

Color 1:
[chwhite "

Color 2:
[clskyBlue s

Color 3:
I clElack "

WV TRYITYR W

11 = =TT
Tmr1"'|"'r1-

TYY T ST

$3000-§33E7 &

Export as BMP

@ Charsets and Screens

Screen and Charset | Single Color | Screen and Charset | Multi Color

RAM Bank:
$0000 - $3FFF +

Screen:

EDDDD-EDSE? s

$0500-$0BE7
$0C00-$0FE7
$1000-$13E7
$1400-$17E7
$1500-$1BE7
$1C00-$1FE7
$2000-$23E7
$2400-$27E7
$2500-$2BE7
$2C00-$2FE7
$3000-§33E7 &

Background:
I clElack w

Charset:

$0000-$07FF
$0500-$0FFF
$1000-$17FF

EIEDD-EIFFF

$2500-$2FFF
$3000-$37FF
$3500-$3FFF

Export as BMP

Color:
[clwhite w

abCcderglyi jlk IVI'III'.I Ihauimophirs
UUAHJZ g 9E’f()

B35 asnmrad |
; DEF EEEEGHEE I
upuppnnpsgg EUD

Presents
Judage Dredd+3i
The: 20-01-91
IKARI + TALENT

Proudly

Crachked 0On

uxber One Coop. .

Page 9 of 39 Pages

3.5 Sine Analysis (SINE)
Select this button to get there:

SINE

What's this? Well, it displays the RAM values one after the other as pixels in a bitmap. In other

words, a neat thing to identify sine waves.

You can easily detect the sine waves used for the logos and sprites. Remember that the TSM sprites
moving in x and y direction. Take a close look:

* the bouncing half sine uses approx $40 bytes and starts somewhere at $2BC0

* the full sine uses approx $100 bytes but does not start exactly at $2C00

Color Theme:
|Lem|:|n b |

Bytes per Seconds:
4410 -

Beqin: End:
$0000 $FFFF

[Play Data as Wave J [Sa'-.-'e Daka as Wa

RAM Bank:

$4000 - $7FFF
$8000 - $BFFF
$C000 - $FFFF

Gridcolors:
|] Cuskomn ...

| B Cusktom ...

| [Cusktomn ...

|] clhwhite

| I clBlack

$2E00

$2000

$2E00

Page 10 of 39 Pages

The showcase uses a lot of char based graphics, so let's have a look at it. The memory range from
$2D00 to $2FFF shows stored char data tables that are used to build IKARI and TALENT logos.
The fringed diagonal line indicates to an equal char tool. The standard screen from $0400 to $O7E7
shows the logos too. But of course, only parts of them!

IKARI and TALENT logos and the scroll text, stored in the RAM:

IKARI and TALENT logos and some text, displayed on the screen:

Text & Scroll-Text:

A small standard font plus the upper letters “A..Z” are used, so you can expect data values from $01
to $5F. That's what is shown from $3000 to $3200 and from $0540 to $06C0. However, the most
used char in any text is “Space”($20).

Page 11 of 39 Pages

3.6 Hex Pad (HEX)

Select this button to get there:

HEX

A simple dump of the RAM including a small PETSCII to ASCII conversion. When using VICE as
input file, you will have access to additional dumps of some MOS chips(CIAs and VIC-II). Since

this is almost standard, anybody knows how it works.

Let's have some findings and updates for the showcase:

charset from $0800 to $OFFF seem to include color tables at $0F10(logo color flasher?)

music player plus music data is from $1000 to $1A7D

some comments and blanks from $1A7E to $1FFF (can be ignored)

scroll text use a charset from $2000 to $22FF (standard charset plus upper letters)
bouncing sine from $2BBE to $2BFD or $2BFE
full sine from $2C07 to $2D06 (=> $2C00 to $2C06 maybe pointers)

RAM from $2D08 to $2FFF is stored char data for logo shakers

some text at $3000 and scroll text from $3080 to $3203 (endbyte is $00, see picture)

byte $9E at $3208 seems to be a basic SYS start command(see picture)

™

16 Bytes View | 32 Bytes View | CIAL/CIAZMNICII

$31cC0
3100
$31E0
$31F0
§3z00
$3210

o0 01 02 03

ZE
1z
12
20
Z0
41

ZE
2c
=
20

20

52

Z0

£0
46
49
20

53

04 05 06 O7F

Z0
ac
0OE
20

oa

£0
o5
£0
20

Az

Z0
14
31
20

oa

£0
03
39
20

L=

o5
Z0
og
39
20

=1

=
£0
20
31
20
3
o1

oL
Z0
4F
Z0
20
3a
ED

0E
£0
0
£0
20
3f
23

oc
4c
20
Z0
20
3a
og

oo
o1
49
£0
20
£0
=0

OE
14
0
Z0
20
53
Fo

oF
05
o1
£0
20
43
oa

Late
r, Fletch Of Ika
ri In 1991

EphPg.2066 3H
LRESE"R .fa=#h] .0

That's a all you need know for the showcase disassembling. The following chapter covers the Koala
graphics and discuss some typical shapes that may come about in the Sine Analysis tool.

Page 12 of 39 Pages

4 Lekker Bratwurst

Guess what's my favourite food. Hmmm... this chapter dealing with stuff out of the showcase.
Bratwurst rules — and Currwurst too.

4.1 Rip Off Koala

When using VICE you can snatch Koala graphics pretty easy. Do a quick scan on all possible
memory locations to get the correct bitmap position, switch to Koala mode and search for the screen

colors.

But please pay attention, you may come across false friends. Example: The well known “noble
bird” is copied by the program for a “fade in” effect from $6000 in $E000. You will get stuck by
searching for the color table in VIC Bank II only. (Oops... guess what happened to me.)

& Bitmaps

Bitmaps Single Color

Background:
I clElack

Memory:

$0000 - $1F40
$2000 - $3F40

E‘?DDD - ESF":D

5000 - $9F40
$A000 - $EF40
$0000 - $DF40
$E000 - $FF40

W

S=1E

Bitmaps Mulkicalar Char

Bitrmaps Multicalor (Koala)

Color:
[clwhite

w Lt L,

il e <

1

F L e T
'|:|] ,I l ""||||Trm:."' T

Bitmaps Single Color

$A000 - $BF40

ECDDD - ﬁDFde ECDDD-ECSE?
Export as BMP
Make KOALA

Bitrmaps Mulkicalor (Koala)

Bitmaps Mulkicalar Char
Screen{Colors):

$AB00-FAEET -~
$ACO0-$AFET
$B300-$B3E7
$E400-$E7ET
$B500-$BEET
$BC00-$BFE7

$CB00-$CEE7
$CC00-$CFE?
$0000-$D3E7
$0400-$D7E7
$DB00-$DBE7

Because Koala uses screen data to define the pixel colors, an internal palette is used for the re-
creation and display. An export to a bitmap file will use this palette too, so you can not define that
on your own. Here are the RGB values in hexadecimal and integer - in case you need them:

$000000 // 0,0,0

(black)

Page 13 of 39 Pages

e SFFFFFF // 255,255,255 (white)

e $2B3768 // 104,55,43 (red)

e $B2A470 // 112,164,178 (cyan)

. $863D6F // 111,61,134 (purple)

e $438D58 // 88,141,67 (green)

* $792835 // 53,40,121 (blue)

e S$SO6FCT7B8 // 184,199,111 (yellow)

e $254F6F // 111,79,37 (orange)

e 5003943 // 67,57,0 (brown)

e $59679A // 154,103,89 (light red)

e 5444444 // 68,68,68 (dark grey)

. $6C6C6C // 108,108,108 (grey)

e $84D29A // 154,210,132 (light green)
e S$SB55E6GC // 108,94,181 (light blue)
e 5959595 // 149,149,149 (light grey)

The “Make KOALA” button streams the selected RAM to a Koala formatted program file, so you
should enter the suffix “.prg”. You can't set the PETSCII code $C1, it won't be accepted as part of a
Windows XP file name. Use the “DirMaster V2/Style” to do that.

In case you are looking for similar robbery routines... nope! Dozens of interlaced and FLI graphic
formats cruising around, that's not Infiltrators' assignment yet. There is a nice tool named “Vice
Snapshot Grabber 4.2” by Ian Coog/HVSC Crew dealing with this.

Page 14 of 39 Pages

4.2 Sine Analysis (more typical shapes)

8-Bit Samples

Whenever a program uses 8-bit audio samples you get typical audio shapes. I made an internal
“data to sound” converter, that's why you can listen to the samples. The little more weird ones can
“listen” to graphic, code or whatever else they like. By the way, pay some attention on the BPS
value you choose. Playing the complete memory using 441 BPS will take approx 148,6 seconds of
unstoppable mythical sound(no thread programming, you know).

The save button creates a Wave formatted file that can be played with any external media player or
editor. To make sure it will be saved as “.wav” that signature is always added - whatever you enter
as file name.

Here is an example taken from a Megastyle Inc. product:

Bytes per Seconds: Beqin: End:
4410 " $4000 $4300 Play Data as Wave Save Data as Wave

So, you are actually able to play Cycleburner sounds. Remember that it does not emulate technical
effect programming on the SID chip, but just plays the original sample. This feature is rarely tested
and I haven't implemented any variations(4-bit, 12-bit) yet.

Fun stuff: In case you got the HVSC collection, you can do this: Make a copy of “I-Ball.sid” (Rob
Hubbard) and change the file suffix from “.sid” into “.prg”. Import the PRG file. Due to it's
signature “RSID....” it will be loaded from $5350 to ???? — but that doesn't really matter. Adjust the
play beginning and have fun.

Page 15 of 39 Pages

Speed Optimized Code

Code without loops always takes a lot of memory, but is often used in bottleneck situations.

Example 1: Let me start with a code snippet writing accumulator A into RAM $78XX.

Offset |OP-Code | Low Byte High Byte |Interpreter
50822 8D 00 78 STA $7800
50825 8D 01 78 STA $7801
50828 8D 02 78 STA $7802
$082B 8D 03 78 STA $7803
S082E 8D 04 78 STA $7804
50831 8D 05 78 STA $7805
50834 8D 06 78 STA $7806
50837 8D 07 78 STA $7807
$083A 8D 08 78 STA $7808

Because OP-Code $8D and High Byte $78 are used frequently, both are shown as horizontal, dotted
lines. The diagonal line represents the increasing Low Byte.

Page 16 of 39 Pages

Example 2: The next one shows OP-Codes $8C and $A0 wrapping up several VIC II registers at
$DOXX. It's the holy “NU FLI” display routine, © by Crest!

So there's not necessarily a diagonal line, more important are horizontal lines at an OP-Code
position.

Example 3: This one uses the indirect addressing mode “LDA ($FB),Y” and “STA ($FD),Y”.

Page 17 of 39 Pages

4.3 CRAP

CRAP allows very little automatism scripting. It's in an early development stage. The following
table shows the available commands.

Command Parameter1 Parameter2 Parameter3 Parameter4
SAVE BINARY $Startaddress |$Endaddress |#filename.bin -
SAVE PROGRAM $Startaddress |$Endaddress |$Targetaddress |[#filename.prg
MOVE RAM $Startaddress |$Endaddress |$Targetaddress -
TRANSFER COLORRAM $Startaddress |$Endaddress |$Targetaddress -
TRANSFER CIAl S$Startaddress |$Endaddress |$Targetaddress -
TRANSFER CIAZ2 S$Startaddress |$Endaddress |$Targetaddress -
TRANSFER VIC $Startaddress |$Endaddress |$Targetaddress -
FILL $Startaddress |$Endaddress |SFillbyte -
INJECT SStartaddress |[$SAmount of $Bytes, Comma -
Bytes separated

UPDATE GRIDS

Because some commands modify the internal memory array, your last command should always be
UPDATE GRIDS. In case you use the disassembler you should do a re-disassemble for a correct

display.

The imported chip data is stored in several arrays, use TRANSFER to access them. The start
address of TRANSFER commands should always be $0000, see examples. This makes only sense
when you imported VICE files. Otherwise you get initial values.

For hexadecimal parameters always use UPPER letters and don't forget the '$'. The '#' is used as a
parameter signal for file names, so enter it before you type the file name. There is some error
handling implemented — but in an early stage. Guess why I called it CRAP.

Here is a senseless example script:
SAVE PROGRAM $1000 $1FFF $1000 #audio.prg
FILL $2000 S2FFF $00

TRANSFER
MOVE RAM
TRANSFER
TRANSFER
TRANSFER

COLORRAM $0000 $07E7 $2000
$0400 $O07E3 $2800
CIAl $0000 $O00F $2CO0O0
CIA2 $0000 SO00F $2C10
VIC $0000 $002F $2C20

INJECT $2D00 SOC $20,$44,SE5,3A9,500,$8D,520,$D0, $8D,5$21,35D0, $60
SAVE BINARY $2000 $2DFF #screen and chip rip.bin

UPDATE GRIDS

Page 18 of 39 Pages

5 The Disassembler
Select this button to get there:

DIS

I do not want to bore you too much, but reading this is mandatory.

5.1 The Label Concept

Labels are generated for any direct JMP, JSR and the branches(BNE, BEQ, BCS, etc.). Every label
includes the targeting and calling memory address.

Label definition:

Label-Lavyout [Walues

Signal L [(Label)

Interpreter J3R, JHFP or EBR3 (Eranch)
Target [§) [3 EIIIH)

Source (§) [§3XEHEE)

Here is a code line example:

Offset | OP-Code

Low Byte

High Byte

Interpreter

Label

Rating

$274A $20

STA

$2B

JSR

L JSR_($2B7A) ($274R)

OK

Here is a look-and-feel:

rpreber 1

JurP Jaks
P BADs
ZALL J1AMs
ZALL BADs
—|Branch JamMs
Branch BaDs
Inkerpreter 1
Inkerpreter 2
Inkerpreter 3

CIAa 2

Graphics

Interrups

Sprites

SID

Screen RAM ($04007
Calar RARM (D000
Clear Screen

Self References
Zuicksearch

Options | Disassembler

Fmmmmmmm—mm - B L_JSF_(52B74)_($2747) OK
Fmmmmmmm—mm - B L_JSF_($2B74)_($2744) OK
Ll .
§=ZB7A AE FF =ZE LDX 5=ZEFF
§=ZB7D 40 00 LDY #500
—| §2B7F Z0 A7 EB ISR L_J5F_(52BA7)_($ZE7F) 0K
§=zBG= SE FF ZE 3Tx 5=2ZBFF
§=ZB85 AE 00 =ZC LDX s=C00
=B85 40 0=z LDY #5502
——| §2ESA 20 AT ZB J3R L_J5F_ ($=ZBA7)_ (§ZBS4A) OE
5 2BED SE 00 2z2C STx s=2C00
§=ZB50 AE 01 =C LDX s=2C01
§=2B93 40 04 LDY #5044
§=ZB95 Z0 a7 ZB J3R L_J5F_ ($=ZBA7)_(§ZE95) 0K
5 =ZB98 SE 01 =z2C STx s=2C01
§=ZB9%E AE 0Z =ZC LDX s=2C02
§=ZB9E 40 06 LDY #5068
5 =2BaA0 Z0 a7 ZB J3R L_J5F_ ($=ZBA7)_ (§ZB40) OE
5 =ZBA3 SE 02 Z2C S5Tx s=2C02
5 =ZzBAG &0 RTS
| L_J5R_($2BA7)_($2B7F) OK
l—»| L_JSR_($2BA7)_($2ESA) OK
» L_JSF_ (§2BA7)_($2B595) OK
#| L_JSR_($ZEAT)_ ($ZEAD) OK
<
Preview:
g§27FF5 AQ T
FE2T7F6 AL Ta&Y
FE2T7F7 Z0 00 10 ISR L_J3F_ (§1000)_(§27F7) 0K
Page 19 of 39 Pages

The good OK, the bad BAD, and the ugly JAM

You may have wondered about the “OK”s above. There is a quality check on every label's
destination address. These four results are possible:

Rating Meaning Comment

OK valid OP-Code found be aware of false friends

BAD valid OP-Code, but evidence for crap or
found inside another incorrect interpretation
code line at target

JAM invalid OP-Code found |evidence for crap at

source and/or target
nothing target is excluded

When disassembling, you get BAD and JAM lists for your convenience. I prepared some extra
functions to handle them, but first......options!

5.2 Options and Searchfunctions

Options, quick wins:

Autoadd Comments: Will add clever(?) information to the code.
Colorizer: Gives you some color themes.

CONCAT Bad Bytes: Let them stick together, they may build a row.

Font-/Line Size: Adjust your glasses for free.

Ignore Trap Sequences: Prevents you from let you get thousands of crap results.
Insert Beauty Blanklines: Inserts an extra line after every end of IRQ, RTS, etc.
Progress: Shows the progress of the disassembling.

Start: Start of the program.

Options, Explained Later:

Autobusy: Re-disassemble immediately.

Snatch Snippets: Give me some code fragments.

The Exclude Disassembly Memory List:

Memory ranges to be ignored by the disassembler. Range overlapping is allowed and will not have
any effect. Range autosort is activated. You need to re-disassemble after changes were made.

Add to List: Adds an entry to the list.

Delete: Deletes a selected entry, use right mouse button for a pop-up menu.
Save: Save you work to a file(ex] = Exclude List).

Load: Import your work done before.

Reset: Give me the initial values.

Page 20 of 39 Pages

Linear Interpreter Scan:

Performs a search on the interpreter terms. You can enter a phrase partly, an example: enter “),Y”
for all interpreter codes using the indirect Y-indexing addressing mode. Keep in mind that any
excluded memory will have an impact on the results.

Byte Sequence Scan:

Performs an old school search that is not affected by any excluded memory.

»only Scan* Button:

Performs the searches explained above, but don't disassemble.

Options | Disassembler

|:| Skark:

Linear Interpreter Scan:

Snippets | Start:
Snatch Snippets

F___

Colorizer: Font-JLine Size Autobsy
DisColors L g = @) Yes
MaviColors w 2) Mo

Evte Sequence Scan:

$0000 | | $FFFF | | 1SR $1000 $0000 | | $FFFF | | A9,00,50,20,00,50,21,00, ,
$0000 $FFFF ($FED, Y $0000 $FFFF g ae00, o, o,
$0000 | | $FFFF | | JMP 405 $0000 | |$FFFF | | 01,58,
Exchude Disassembly Memary: Insert Beauty Blanklines:
$0000 | | $0000 | | Litte Comment add ko List () ves Mo
§0000 - §00FF Zeropage COMCAT Bad Bytes
§0100 - $03FF extended Zeropage
Yes Mo
$0400 - $07FF Aoreen ® O
$000 - §BFFF Basic-ROM Ignore Trap Sequences:
$D000 - $DFFF CIh, VIC, 5ID
$EO00 - $FFFF Kernal-ROM [V]15R $2020
TP $eCaC
Autoadd Comments:
{:}' Yes @ Mo
Load l [Save l [Reset TS

[)

Page 21 of 39 Pages

5.3 Searchlists

Use the dropdown component to select a generated list and push the left mousebutton to choose an
entry. You will be instantly routed to the codeline. Corrupt rated codelines are sorted in six different
lists, you can quickly inspect them with this:

Perception Switch:

(®)source () Target

Here is a table with detail information:

Listselection Description Perception Search
Switch Type

JUMP JAMs see above yes interpreter
JUMP BADs see above yes interpreter
CALL JAMs see above yes interpreter
CALL BADs see above yes interpreter
Branch JAMs see above yes interpreter
Branch BADs see above yes interpreter
Interpreter 1 see above no interpreter
Interpreter 2 see above no interpreter
Interpreter 3 see above no interpreter
Sequence 1 see above no sequence
Sequence 2 see above no sequence
Sequence 3 see above no sequence
Snippets / Startup |Grabs an unlabeled code line no interpreter

having a preceding line of no

code, end of IRQ or RTS. Ten

lines of valid code must follow

to get an entry. You may find

the programstart, code fragments

or some IRQ stuff. The given

startaddress (options) will show

up here, too.
CIa 1 SDCXX no interpreter
CIA 2 SDDXX no interpreter
Graphics SpD011, $D01l6, $D018, $D020, no interpreter

$D021, $D022, $D023, $DDOO
Interrups S$p011, $D012, $D019, sDO1Aa, no interpreter

$0314, $0315, $0316, $0317,

$0318, $0319, SFFFE, SFFFF,

$DCOD, $DDOD, S$EA31, SEATB,

SEA81
Sprites S07F8-$S07FF, $D000-$DOOF, $D013- no interpreter

$D015, $DO1B-$DO1F, $D025-$DO02E,

$D010, $DO017
SID SD4XX no interpreter
Screen RAM ($0400) [(S0400-S07E7 no interpreter
Color RAM ($D800) SD800-SDBE7 no interpreter
Clear Screen JSR $E544, JSR SFF81 no interpreter
Self References Code target equals code offset no interpreter
Quicksearch Grabs all direct code references no interpreter

to a given address or range.

Part of some disassembler popup

tools, see chapter 5.8

Page 22 of 39 Pages

Example 1: This is an example how to find anything on the standard screen, so it should not be
hard to find scroll or shake routines. The search routines grab any possible OP code combination.

|5ueenRAM($D4DD}

vl

Perception Swikch:

@' Source

{} Target

Dptions | Disassembler

$0F9E_ASL
$1740_AND
$1861_ASL
$2144 INC

$2695 JMP
$282E_STA
$282E_STA
$2843_STA
$2849 STA
$284F STA
$2919 LDA
$291C_STA
$293F_STA
$2A451 STA
$2A457 STA
$2A5D_STA
$2A63_STA
$2A69 STA
$ZA6F_STA
$2A475 STA

$0606
$0606,%
$041E,¥
$0606,%
20400,
£040F

$06AT,Y
$0515,%
$0565,%
$056S,¥
$06038,%
$0659,%
$0655,%
$067F

$0400,T
$0428,T
$0450,T
$0478,T
$0440,T
£0408, T
$04F0, T

3

™ "
7 Disassembler

L_EBRS ($2670) ($2674) OK

2670
2673
§2674
2676
2679

9D 00 D4 STA $D400,X

Ci

10 Fa

ZC 00 g0
AZ 00

DEX
EPL L BRS ($2670) ($2674) OK
BIT $&8000
LI #500

L_EBRS ($267B)_($2687) OK

§267E

ED

5

26

L&

$2695,%

2681
§2683
§2686
2687
2659
2686

A9
an
Ed
oo
AZ
A9

oo
oo
oo

Fz
oo
o1

D

L&
3TA
INX
ENE
LI
L&

Z0400,x
#500
$DE00, ¥

L_EBRS ($267E) ($2687) OK
#500
#z01

L_EBRS ($268D) ($2693) OK

§ 268D

9D 00 DE STA $DS00,X

Example 2: This is a typical disassembling error, and a real BAD one too. RAM $2B18 is called
two times(see CALL BADs), additionally the value $A9 indicates to an LDA #$00. These are
inherent errors triggered by a false interpretation of $10 at $2B17. See chapters 5.7 to 5.9 how to

analyse and handle this quickly.

|CALLBAD5

vl

Perception Switch:
() Source (%) Target

Opugn5| Disassembler

§1B23_T5R
21B28 J3R
§2395 JAR
§269D_J5R
§2770_T3R
$Z7FA_T3R
§3033_T3R
§3066_T3R
§3137_T5R
§319C_T3R

AT1TAN TOT

£ 5545
§414D
¢2B15
£1902
$ 20D
$2B1E
1544
$3052
£1354

F0C41

c1TAaaT

|3

™ "
3 Disassembler

= e ————

§2B13
§2E14
§2B1la

Ce OF

.byte $0F
DEC z0F
.byte §7F

L_TSR_($2B18) (§$2398) BAD
L_TSE_($2B18) ($27F4) BAD

EPL L_ERS

gD 10
gD 17
gD 1D

oo
oo
oo

ED 07 2C

Lbyte 500
5Ta D010
3Th D017
5Ta sDOLD
LD 2B70
LDa £2C07 X

Page 23 of 39 Pages

5.4 Preview Window

Since you can't use the “Perception Switch” on many lists there is a preview window. A double-
click on any valid RAM address will automatically show a preview. It likes every three byte OP-
code as well as addresses in labels .

You can quickly stab around if you are curious.

| Il

2393

L TSR ($2398) ($2744) DK

§2398
§ 2398
§239C
§Z39F
§23AZ

2343
§Z34RF

20
53
20
20
a0

13 =B

oo 23
4E 23

§ZB17
§ZB13
FZEBla
§ZE1D
§2ZBz0
§2ZBZ3
§ZBZ6
ZZB29

$2B13 .byte §0F
$2El4 C5 OF DEC $0F
$ZE16 .byte §7F
L _J8R_(42E18) ([FREL

L_JSR_($2E18) ($=7Fa

10 a9 BPL L _ERS ($2A4C2) ($2B17)
Jbyte 00
gl 10 D0 3T4 D010

gl 17 D0 3Ta D017
gD 1D D0 3T& DO1D
AF YO ZB LDX §ZB70
BD 07 2C LDA §2C07,X
13 CLC

.byte $00,500,400,500,500

TSR L_JSE_($2E18) ($2398)

CLI

TSR L_TSE_($2300) ($239C) OK
TSR L_J5R_($234B) ($239F) OK

RT3

.byte $00,500,500,500,500,500,500,500
.byte $00,$00,500,500,$00,500,500,500

Page 24 of 39 Pages

5.5 NaviMap

This is a concept of weighting the memory. The RAM is portioned in $80 byte pieces and checked

for the code dose inside. The result is a map of

the memory that can be used to navigate through the

disassembling. A click on the map will route to the selected memory area. The cyan coloured
triangle is the current position of your disassembling, while the yellow shows the preview position.

Options | Disassembler

AT 47 Z3
Fo 0l
&0

L_T5R_($2300) ($239C) OK

L_ERS ($2309) ($2306) OK

ujulu] 'i'.EII:II:II:I 'i'.'EII:II:II:I '_i:F'.I:II:II:I 'I.E.I:II:II:I|'i'.lZ:ZI:II:II:I|'I.EZII:II:II:I|$EI:II:II:I|'I.FI:II:II:I
.byte $00,$00,500,$00,$00,$00,$00,500
.byte $00,500,500,500,5$00,500,500,500
.byte $00,500,500,500,500,500,$00,500
.byte $00,500,500,500,500,500,500

DEC £2347
LDA §2347
EEQ L_BRS
FTS

_ (#2309 _rg2306) DK

There is the color spread formula.

Colors Memory Rating
black unloaded

gray excluded

dark green almost crap
green some code
light green code

Let's have some application guessing:
'NUFLI' in VICE with standard excluded areas:

s

”

0000 |$ 1000 |$2|:||:||:| |-3:3:|:||:||:| |$a14:||:||:|

5000 |$E.|:||:||:| |$,."-|:||:||:| |-3::5:|:||:||:| |$'3|:||:||:| |$H|:|I:|I:||'I.E.|:|I:| 1] |-3:-:::|:||:||:||$[:-|:||:||:||$E|:u:| 1] |$F|:||:| 1]

A crunched PRG file, in case you like unpacking routines:

-

F0000 |$ 1000 |'$.EI:II:II:I |'$.E:I:II:II:I |$-‘-1-I:II:II:I
Wizball, in game:

$£5000 |'$.E.I:II:II:I |$_."'I:II:II:I |'$.E:I:II:II:I |'$.'EII:II:I 1] |$F'|I:II:II:I|$E.I:II:II:I |$IZ:Z I:II:II:I|$|:ZI I:II:II:I|$EI:II:II:I |$FI:II:II:I

CEQ0D | $F000

Page 25 of 39 Pages

5.6 Pop-Up Menu (Basics)

The disassemble window uses a pop-up menu that gives you access to some more methods.

---|4260B 20 EE 27 J5R L_J3R_(fERIOO) _($260B) OK
$260E A9 04 LD4 #504
52510 2D E6 26 aTa $25E5 JUFI'II:I ko L:IE'EI:UI:IFI
$2613 A9 20 LD4 #4520 Jump ta RAM v
§Z615 &0 62 Z9 STA $Z96Z Jump to Bookmark, #
$2615 A9 90 LD4 #590 Set Bookmark ’
$261h 8D 77 28 STh $2877 Code Shaker
$261D A% 00 LD4 #500 Hlegal Shaker
$261F 8D A9 28 STA $28A9 Dicable b Data ,
§2622 78 SEI _
$2623 A9 01 LDA #501 Quicksearch '
§2625 8D 1A DO 5TA $DOLA Copy

Jump to Selection: Go to the selected offset address.
Jump to RAM: Let you jump around.

Jump to Bookmark: Go to a bookmarked address.

Set Bookmarks: Set a bookmark for a marked address.

Copy: Copy marked text to the clipboard

The little more complex items “Code Shaker”, “Illegal Shaker”, “Disable to Data” and
“Quicksearch” are introduced below.

Page 26 of 39 Pages

5.7 Code Shaker and lllegal Shaker

Whenever you are not sure about alternative disassemble interpretations, try “Code Shaker” or
“Illegal Shaker” with a marked offset address. Both also like disabled RAM offsets. The results are
shown in the preview window. Illegal CPU instructions get an extra marking .

L_J3R_($2B18) ($2398) BAD
L_JSR_($2B18) ($27F4) BAD

10 A9 EPL L_ERS ($ZACZ) ($2E1l7) BAD

herta SO0

gD 10 ¢ Jump ko Selection

¢ omon m Jgmp ko RARM »

= Jump ko Bookmark, ¥

————————————————————————————— Set Bookmark, r
Code Shaker

_____________________________ Tllegal shaker

£2B17 10 A9 BEPL $ZACE Disable to Data »

$2B19 00 .byte $00 _

$2B1a4 8D 10 DO STA §DOL0 Quicksearch '

$2B1D 8D 17 DO STA 4DOL7 Copy

§ZzB20 8D 1D DO &Ta sDOLD
2623 AE T0 EB LDX §ZB70
gZB=26 ED 07 &2C LDA §2C07,X

$2B20 18 CLC
$2EZh B9 18 ADC #5185 +0000 |$1|:||:||:| +2000 |$E:|:||:||:| |$a14:||:||:| |$5|:||:||:| |$E.|:||:||:| |$_."-|:||:||:| |$:E:|:||:||:| |$'E||:||:||:| |;i:#-.[u:ujl-i:l’-_'.[l[u:l |$-::
$2FE2C 4b T byte DA, 551,500,510,
£2EZD AD 00 LDY #5500 byte DA, SF0,$33,5C9,
_____________________________ .byte $FE,$E6,5FE,5D0,
Shaking: Part two of three -byte §DO,§F5, SR8, 5EG,
_____________________________ .byte §$FF,5D0,5EL, 545,
£2E17 10 .byte 10 .byte 2D, 545, 5FC, 585,
§2B15 A9 0D LDA #500 byte §FF,§9A4,543,5837,
$2B1h 8D 10 DO STA $DOlo -F"?LW$1;5;;EH;:” ’”E:
$2B1D 8D 17 DO STa $DOL7T <

42B20 8D 1D DO STA $DOLD - Jump to RAM =
§2B23 AF 70 2B LD¥ £2B70 | ———mmmm e Jump to Bookmark ¥
$ZB26 ED 07 2C LDA $2C07,X T1legal: Part one of three... Set Bookmark, L4
§2B29 15 CLC | Code Shaker

$2EZh 69 15 ADC #5135 $3256 FF 94 A9 ISE §A99A,X ILLEGH [ETESEEmm-

$2BZC Ab TaX, $3259 37 85 BLA §85,X TLLEGAL | Li_bletoData "
$2EZD &0 00 LIT #500 §325E 01 58 OF& ($58,%) Quicksearch R
------------------------------- $325D 95 TYL

Shaking: Part three of three... |$325E 4C 00 20 JMP $2000 Copy
------------------------------- $3261 4C AF A7 JMP $ATAE

$2B17 10 Jbyte §10 53264 Ef FE INC $FE

$2E15 AD Jbyte SA9 $3266 DO 02 ENE $3Z64

$2B19 00 Jhyte 500 §3268 EE FF INC $FF

§ZB1a &SD 10 DO &Ta sDOL0
gZE1D &0 17 DO &TA sDOL7T

Page 27 of 39 Pages

5.8 Quicksearch and the Quicksearchlist

Quicksearch performs an interpreter scan on the marked offset address, the output is transferred to
the Quicksearchlist. Please note that branches will not be handled and not be found.

Options | Disassembler I—

| Quicksearch

v

Ferception Switch:
(%) Source

() Target

F24FC_5TA $2ZB17

000 {2000 |$9000 $ﬁnnﬂ$Eﬂnn|$ 000

P

B L_JSR_($2E18) ($2398) BAD
M L_TISR_($2E18) ($27FA) BAD

10 A% EPL L ER3 ($24C2) ($2B17
Junip ko Seleckion

8D Jump ta RAM *

gD Jump ko Bookmark, F

8D ser Bookmark r

AE Code Shaker

ED {

18 Illzqal Shaker

go Disable to Data »

Quicksearch

A0 Copy

RAM Range

FAM Address ‘

The subitem “RAM Range” is an extended version. This can be very useful when facing a table of
pointers. It only accepts a range selection the way shown below. Please note that the last offset
address is not part of the range. So in this case, the range is $2B13 - $2B18.

| Quicksearch

vl

Perception Swikch:
(®)Source () Target

§2395_TSR $2Bl8
§27FA_JSR $2B18
§2AA0_5TA $2B13
§2ah4 LSR $2B13
§2a47 L3R $2ZB13
§2akA L3R $2ZB13
§2AAD_LDA $ZEB1E
$2AE7 _LDA $2B13
$2ABA_STA $ZBLS
$2AC4 LDX $2B1S
$2AFC_STA $2E17
$2AFF_LDX $2ZB14
$2B05_STA $2EBlE
$2BOF_STX $2El4

™ .
1 Disassembler

Options | Disassembler I—

000 £9000 | £4A000{$R0
ATH §ZB14

&0 RTE

Jump ko Selection p
Jumnp ko RAM L4 3
Jumnp ko Bookmark, ¥ D
Set Bookmark, L
Code Shaker 7%
Illegal Shaker

Disable ko Data k

RAM Address

Quicksearch

Copy RAM Range

Page 28 of 39 Pages

5.9 Disable to Data

This method can add bytes to the excluded list using the interpreter view. Depending on the option
“Autobusy”, a re-disassembling is done immediately. You may use a range instead of handpicking
single bytes.

§2B13 .byte §0F
$2Bl4 CE OF DEC $0F
$ZB1E .byte §7F

----p|L_ISE_($2B18) ($2398)
----p L_I3R_(32B18) ($27Fk)

10 A% BPL L _BRS ($2ACZ) [§2E17)
Jumnp ko Selection g

Jurnp Eo RAM L

Jump to Bookmark, ¥ D

Set Bookmark, L]

Code Shaker L

Ileqal Shaker

Disable ko Daka

Quicksearch ¥ 1stand 2nd Byte

Copy 1sk to 3rd Byke

selected Range

The disabled byte is automatically added to the excluded list.

0000 - Z00FF Zeropadge

§0100 - 503FF extended Zeropage
§0400 - S07FF Soreen

§2E17 - $2E17 -» 1lst Eyte
§A000 - SEFFF BEa=zic-ROM

§po00 - $DFFF CIA, VIC, SID
§E000 - SFFFF Eernal-FOHM

Result:

52B13 .byte £0F
2814 Ca OF DEC 50F

$2B1lA

£2B18 49 00 LDa #s500
$2Ela 8D 10 DO 3Ta sDOL0
2B1D 8D 17 DO 3Ta sDOLY
$2BZ0 5D 1D DO 3Ta £DOLD
§2B23 AE 70 2B LDK §2B70
§2BEZ6 EBD 07 2C LDa §2C07 X
f=2B=9 18 CLC

§z2B=24 89 18 ADC #5135

Page 29 of 39 Pages

6 Showcase

Welcome to this little showcase. This shall give you some information about how to find several
program routines. So let's start with the excluded areas identified in chapter 3.

6.1 Fill the Excluded List

In many cases you can never be sure what's really going on — before you really look inside. So, the
excluded list is just a draft and not the ultimate final one. You should always put the music on the
list. The player, especially it's data, produce additional errors. This is how the excluded list may
look like before you push the disassemble button. Because large RAM areas are excluded it
shouldn't take longer that one or two seconds.

$0000 - F00FF Zeropade S
$0100 - Z03FF extended ZIZeropadge

$0400 - S07FF Soreen

$0500 - SO0FFF Logo Charset

$1000 - §1FFF Muzic ItrikeForce remake
$Z000 - §2Z2FF Font Charset

$2400 — $25FF TSHM Sprites

$ZBCO - {2ZCFF Jines

§2D00 — §ZFFF Logo Data

$3000 — §3203 Text and Scrolltext Data

3200 $FFFF Next Program "

6.2 Solve the BADs and JAMs

Checking the BAD and JAM entrys is the very first thing you should do. Because “JUMPs” and
“CALLs” have the tendency to be multiple inherited errors, you should take care of them in the first
place. Solving them means to get rid of most problems. Due to the excluded list entry, there are only
seven BAD errors and no JAMs. You may got little different results here, it depends on the time
your VICE snapshot was made(pointers for movements, color tables and scroll text).

'@ Disassembler @ Disassembler
w ranch BADs w
Perception Switch; Perception Swikch:
@ Source (O Target () Source () Target
523958 _J5F §EE1G §2710_BVC $2739
F2770_T5F 52490 §2714 BCC §273D
F27FA T5F §EE1G §Z49C_BPL $Z44R

§ZB17_BPL §ZACZ

All three “CALLs” are inherited errors triggered by false interpretations at $2B17 and $2A9C, so
disabling $2B17 and $2A9C is a good thing. The $2B17 problem was discussed in chapter 5, so
there's no need to do this again. $2A9C is pretty much the same, just remember to use the
“Perception Switch”, “Codeshaker”, “Quicksearch” and “Disable to Data” for this.

=> Errors at $2710 and $2714 remaining.

Page 30 of 39 Pages

Both errors are close together and in between valid code lines. The indirect “JMP ($0020)” at
$270B suggests that the errors are not executable code.

L ERS ($2708) ($2709) OK
52708 88 | DEY
$2709 DO FD ENE L _BRS ($2708) ($2709) OK
$270B 6C 20 00 JMP ($0020)
$270E .byte $14,527

fommmmm—————— §2710 50 27 EVC L_ERS_ ($2739) ($2710)

i §2712 76 27 ROR $27,%

Femmmmmmm—na- {g2714 @0 27 ECC L_ERS ($273D) _($2714)

" $2716 .byte $B2,527,5EF,527

: §2714 A9 10 LDA #510

: $271C 8D 12 DO STA §D0LZ

: §271F A9 OB LDA #50B

H §2721 8D 21 DO STA $D021

It looks a lot like an internal table with many $27 values used for something else . To be sure of
that, you can use the “Quicksearch” functionalities. I used the range $270E to $2719($271A).

Hercepuion switcn: | £0000 |1000 |$2000 | $3000 | $4000 | $5000 [$6000 [$7000 |35000 [$9000 | $a000] $B000 (000l $0000 45
(¥ 5ource () Target $26FE AL Ti
$26FC LDA $270E,X $26FF &5 20 4Th 520
§2701 LDA $270F,% £2701 ED OF 27 LDA £270F,X
2704 55 21 3Th 521
22706 AD 05 LDY #505

L_BR3_($2708) ($2709) DK

§2708 88 DEY
§2709 DO FD ENE L_ERS_($2708) _($2709) DK
$270B 6C 20 00 JMP ($0020)

§270E .byte §1&,527

§2710 50 27 BVC L_BRS_(§2739) (§2710)
§2712 76 27 ROR $27,X

$2714 90 27 BCC L_BRS_($273D)_(52714)
Yes, it's a jump vector table for $0020/$0021. => exclude!

A jump vector table is always a nice thing to have. Since Infiltrator can't produce labels for indirect
jumps, I got some additional information about the program design. However, they may appear in
the “Snippets” list. These are the table values without any code interpretation:

$270E byte $1A,$27,$50,$27,$76,527,$90,$27
$2716 .byte $B2,$27,$BF,$27

Time to take care of the basic framework.

Page 31 of 39 Pages

6.3 Understand the Program Framework

Catching the start and end of a program is not always that easy. But since we are facing an intro it
should not be that hard. I don't like to discuss all attempts, so let's try something simple:

CALL for music player initialization (Interpreter Search 1): CALL at $27F7, part of a subroutine at
$27EE which is called form $260B. That routine starts at $2603 with “LDA $02A6” (checking for

the PAL/NTSC version) and does not have a label. Gotcha!

§2606 DO 03
§26035

$25F3 .byte $00,500,400,400,500,500,500,500
$25FE .byte $00,500,500,500,500,502

$2601 0 A5L A

$2602 .byte §07

$2603 AD A6 02 LDA $0Z46

ZC 00 23 BIT 2300

L_EBRS ($260B) ($2606) DK

===152Z60B =Z0 EE 27 J3R L_J3FR_(527EE)_($Z60E) OK
§Z60E 4% 04 LDL #5704
2610 8D E6 Ze 3Th $Z26E6
§2613 A9 Z0 LDA #520
§2615 8D 62 29 &ThA 2962
§26158 4% 390 LD4 #5320

ENE L _BRS ($260E) ($2606) OK

Searching for the end: Easy, because “Space” activates the end! Use the “CIA 17 list with register
$§DCO1, you get the loop for the keyboard scan. You can catch the memory move routine along the
way. (LDA $2698,X — STA $0400,X — JMP $040F — LDA $3204,Y — STA $0801,Y)

-

L_ERS ($2670)_($2674) OK

$2670 9D 00 D4 5TA $D400,X
$2673 CA DEX

$2674 10 Fh BEPL L _ERS ($2670) (%
$2676 2C 00 80 EBIT $8000

$2679 A2 00 LD #500

L_ERS ($267E)_($2687) OK

L

=
§26G1 A9 00 LD4 #500

$2653 9D 00 DS STA £DS00,X

$2686 ES I

$2687 DO F2 ENE L _ER3_($267B) (%
$2Z6E9 AZ 00 LDX ##00

§Z66E A9 01 LD& #501

L ERS ($268D) ($2693) DK

$265D0 9D 00 DS STA $DS00,X
$2690 ES I

$§2691 EO0 OF CPX #50F

$Z695 DO Fa ENE L_EBR3_(5268D) (%
§2695 4AC OF 04 JMP $040F

§Z698 09 OF ORA4 #50E

F2047 A9 34 LD& #5354
F2049 §5 01 3TA 501

a9 LDna

o1

35 04 STA 504
A9 03 LDA #:508
g5 05 3TA 505

L_ERS_($26BE)_($26CC) OK
$Z6EE A0 00 LDY ##00

L_ERS_[5ZEBD)_[($Z6CZ) OK

$26ED E1 02 LDA (5021,7
$26EF 91 04 STh (504),T
$2601 O INY

$2502 DO FO ENE L_ERS ($26ED)
$2604 E6 03 INC $03

$2606 E6 05 INC 505

$2608 A5 03 LDA 503

$26CA C9 FF CMP #5FF

F26CC DO ED BNE L_ER3_(§=6EE)

Page 32 of 39 Pages

Get IRQ start: Use the “Interrupt” list to get $26E7

FZeZ2 13 3EI

§2623 A% 01 LDa #501

2625 8D 14 DO 3TA sDOLA

F2628 A9 TF LD& #57F
gh 0D DC 3Ta sDCOD
A% 1B LD& #51E

gl 11 4Tk

Or use the “Snippets”: Grabs the main start, the IRQ start, the jump vector table addresses seen

before and of course some crap.

52347 THA
§2603 LDA
§26A47_LDA
§26E7_LDA
§2714_LDA
§2750_LDA
§2776_LDA
§2790_LDY
§27B2_LDA
§27BF_LDA
§27ED_RTI
§28A5_LDX
§29E1_ORA
§2AZ0_ASL

#5354
gDh0l3
#:£10
#54C
#56E
#5073
#5EC
#3512

#504
#5FF
§FF

§25E3 .byte $00,500,500,500,500,500,
¢ Z5EE .byte $00,%00,$00,$00,400,500,
§25F3 .byte $00,500,500,500,500,500,
4 25FE .byte $00,4$00,400,500,500,502
§2601 04 ASL A

2602 .byte $07

0z
ENE L _ERS ($260B) ($2606) DK
BIT 52300

AT A5
oo o3
ZC 0o 23

s 2603

2606
2608

L_EBRS ($260E) ($2606) OK

§260B Z0 EE 27
§Z260E A% 04

J5R L_JSR_(527EE)_(5260B) OK
LDA #504

You may also try the standard sequence 3 ($01, $58) for the final decompression command. It
doesn't work here, because the JUMP to $2603 was originally placed on the screen and is gone. So
it depends on the used packer, cruncher and the memory usage. You may receive some
decompression code fragments in excluded areas, use “Code Shaker” for a peek.

Intro framework:

START
$2603

R
<
Q
Q
S
<
N
~
<
~
S
<
O

Init IRQ,
Music, etc.

\
\
I\

,,SPACE*

Loop

Memory
Mover

‘@

~“\‘|'III|IIIIIIIIIIIIII"

Subroutines:
IRQ $26E7 -Logo Shakers
- Logo Flasher
JMP Table ($0020) - Sprites X
$271A - Sprites Y
$2750 - Scroller
$2776 - Scroll Flasher
- Music Play
JMP SEAS81 RTS

Page 33 of 39 Pages

6.4 Getthe IKARI Logo Shaker

Using the “Screen RAM” list is an efficient approach. The X sine position is read from
$2A9A(calculated somewhere before). Finding the TALENT logo and the scroll is one and the same

thing.

™ "
7 Disassembler

|5ueenRAM($D4DD}

vl

Perception Switch:

@' Source

{} Target

Ciptions | Disassembler I—

immn|$nmn|

$267E_STA
$2695_JMP
$282E_STA
$282E_STA
$2843_5TA
$2849 STA
$284F STA
$2919 LDA
$291C_STA
$293F STA

$2A457 STA
$2A5D_STA
$2A63_STA
$2A69 STA
§ZA6F _STA
$2A475_STA
$2ACC_STA
$2AD2_STA
$2ADS_STA
$2ADE_STA
$2AE4 STA
$2AEA STA
$2AF0_STA

$0400,%
$040F

$06AT,Y
$0515,%
§0568,%
$056S,¥
$06038,%
$0659,%
$0655,%
$067F

$0400,¥
$0428,T
$0450,T
$0478,T
$0440,T
$04CE, T
$04F0, T
$06D0,T
$06FE,T
$0720,T
$0748,T
$0770,T
$07938,T
$07C0,T

£4000 | £5000 | $E000 | £7000 | $£2000 | £9000 | £A4000 | $E000 | $£C000 | F0000

§ZA3C
FEA43F
§ 24842
§2445
§ 24443
£

AT
gl
20
20
Gl

a5

24

94 Zb

49

24

TF 24

L&
3Ta
T3R
T3R
ET3

§2R05
§ZROL

L_TSE_($2449) ($2442) OK
L_TSE_($ZA47F) ($2A445) 0K

g

L_TSE_($2A49) ($2442) OK

g

LD

§2449 AR 94 24 LDX §ZA%4
§244C 40 00

#500

g

L_ERS ($2A4F) ($247C) OK

ED

[I}5]

BED
a9
BED
23
BED
23
BED
23
BED
23
BED
23
Ed
Cd
co
oo
Gl

3D
23
2
a0
AT
fi=
DC
A0
11
Ca
45
FoO

a8
oo

D

D
04
D
04
D
04
D
04
ZE
04
ZE
04

L&

L&
3Th
L&
3TA
L&
3TA
L&
3TA
L&
3TA
L&
3TA
INX
INT
CPY
ENE
ET3

£2D08, %
$0400,7F
§2D3D, %
§0425,T
§2D72,%
£0450,7
§2DA7, %
£0478,T
$2DDC, %
§0440,T
§2E1L,%
§04CE, T
§2E46, %
S04F0, T

#5258
L_ERS ($Z44F) ($2A47C) OK

Page 34 of 39 Pages

6.5 Get the Logo Flash Routine

Use the “Graphics” list and try for $D022 or $D023, you will find the typical IRQ constructs. Since
the color bytes are updated by another routine it's obvious to do a “Quicksearch”.

This routine uses color tables at $0F10, $0F50 and $0F90.

@) Disassembler,

| Quicksearch

Percepkion Switch:
®source () Target

Options

$236Z_3TA 5276C
§230B_STA 52707
2374 5Th 52762

™ -
Disassembler

| Quicksearch

Perception Switch:
& source () Target

§230B_3TA 52707
2374 _3TA §2762

Options

Disassembler

Disassembler

£

601
J5R(§234B)_(4$239F) OK

Jump ko Selection
Jumnp ko RAM L4
Jump ko Bookmark, *
Set Bookmark 4
Code Shaker
Disable ko Data

RAM Address

F3000 | £8000 | +R.000

5234B
§234E
§4351
2353

CE 92 23
AD 22 23

F0
&0

ol

DEC
LDA

2392
§a392

EEQ L_BRS_($2354) ($2351) OK

RT3

s

s

L_ER3_($2354)_($2351) OK

52354
2336
2359
52358
§235E
2360
2362
2365
2368
72300
236K
53371
52374
2377

A9
gD
AZ
ED
ca
F0
=1
&I
ED
gD
gD
ED
gD
&I

ol
az
la
1o
F0
Z8
18
ED
50
a7
DE
an
6a
DA

Z3

oF

27
27
oF
z7
27
oF
27
27

LD&
GTA
LD
LDA
CHP
EEQ
3TA
3TA
LD&
GTA
GTA
LDA
3TA
3TA

#501
$2392
#518
§OFLO, %
#5FD

L ERS ($2384) ($2360) OK

$276C
$27E0
§0F50,%
§2767
§27DE
§OF90,%
§2762
2705

Page 35 of 39 Pages

6.6 Getthe TSM Y-Movement Routine

Just use the “Sprites” list and choose. You may wonder about $2B38 and $2B3D feeding the Y
sprite registers with static values. Well, I don't know — maybe the programmer intended to charge X
and Y registers in the same routine.

However, $2B7A is what we are looking for. The routine is called three times(speeding up the
movement) and uses the bouncing sine at $2BBE.

|Sprkes

v|

@' Source

Perception Switch:

{} Target

™ "
3 Disassembler

Options | Disassembler I—

gnmm|$umnhz

$2867_STA
$286C_STA
$2871_STA
$2878_STA
$2885_STA
$2884 STA
$288F_STA
$2892_STA
$2895_STA
$2898_STA
$289E_STA
$289E_STA
2841 STA
$2844 STA
$295E_STA
$2Blhk STA
$2B1D_STA
$2B20_STA
$2B30_STA
$2B33_STA
$2B38_STA
$2B3D_STA
$2B56_LDA
$2B5C_STA

$2BB3_STA

$D0L0
$D0LC
$DOLE
$07F5,x
$D0Z5
$D0Z6
$D0Z7
$D0ZE
$D0Z9
$D0ZA
$D0ZE
$D0ZC
$D0ZD
$DOZE
$D0OLS
$D0L0
$D0L7
$D0LD
40000, T
$D003, T
$D00L,T
$D009,T
$D0L0
$D0L0

$D00L, T
$D00%9, T

000 | £2000

| I-—‘I-I:I [u]1] | 'I.EI:I [u]1] | IE. Qa0 | I.-"I:I [u]1] | 'I.EI 000 | I'EI Qa0 | 'I.F'.I:I [u]1] | IE. Qa0 | 'I.IZ:Z (11 | 'I.l::l Qa0 | 3
L_TSR_($2E74) ($2747) 0K
L_TSR_($2E74) ($2744) DK
L_TSR_($2E74) ($27FD) DK

§ZB74 AE
§ZB7D A0
§ZB7F 20
§ZB82 GE
§ZB85 AE
§ZB858 A0
§2B84 20
§ZB8D GE
§ZB90 AE
§2B93 A0
§2B95 20
§ZB958 GE
§ZB9E AE
§ZB9E A0
F2BA0 20
§ZB43 GE
§ZB46 a0

FF
oo
A7
FF
oo
0z
A7
oo
o1
04
A7
o1
0z
0a
A7
0z

2B

2B
2B
at

2B
at
at

2B
at
at

2B
at

LI
LY
T353R
ATX
LI
LY
T353R
ATX
LI
LY
T353R
ATX
LI
LY
T353R
ATX
RT3

§ZBFF
#:00

L_TSR_

§ZBFF
g2ZC00
#502

L_TSR_

g2ZC00
§2C01
#504

L_TSR_

§2C01
2002
#5006

L_TSR_

2002

L_TSR_($ZEBA7) ($2B7F) DK
L_TSR_($ZBA7) ($2BG4) DK
L_TSR_($2BA7) ($2B95) DK
L_TSR_($2BA7) ($ZBA0) DK

§ZB47Y EBD
§ZB4ld 1§
§ZBAR 69

BE

aF

2B

99 01 Do

§ZBE0 18
§ZBE1 69
§ZBBE3 99
§ ZBEG
§ZBE7Y
§ ZBE9
§ ZBEE

15

os oo

40
0z
oo

LIA

LI

($2BA47) (5ZB7F) OK

($2BA7) (5ZB84) OK

($2BA47) (52ZB95) OK

($2BA7) (52ZBA0) OK

¢ 2EEE, ¥

#56F
gD00L, ¥

#5615

$D009, T

#540

L_ERS_

#:00

L_ERS ($ZEED) ($2BE9) DK

§ZBED &0

RT3

{$2BED) _(52ZEBY9) OK

Page 36 of 39 Pages

6.7 Get the Scroll Text Flasher

Use the “Color RAM?” list. The routine uses a small color table and has a delay of three frames.

™ "
Disassembler

|cmarRAM($Dsnn} v1

immn|$nmn|

Perception Swikch:
(®)Source () Target

§2683_3TA §Da00, X
§268D0_3TA §DE00, X
§2833_ATA sDAAS, X
§2836_3TA §DO1E,X
2854 3Th DSBS, X
§28537_ATA §DASE,X
28354 3TA §D96E,X
§2835D_3TA gDANE, X
§2993_LDA §DSOES,X
§2998_3TA §DOES, X
2943 _LDA D262, K
§2946_3TA §D96E, X
2949 3TA gDAOS, X
§29C58_3TA sD9EBEG

§29CE_3TA sDAZF

§29CE 3TA

Optians | Disassembler I—

| I-—‘I-I:I [u]1] | 'I.EI:I [u]1] | IE. Qa0 | I.-"I:I [u]1] | 'I.EI 000 | I'Ei Qa0 | 'I.F'.I:I [u]1] | IE. Qa0 | 'I.IZ:Z (a[ui] | 'I.l::l Qa0 |
L_TSR_($29E3) ($27E4) OK

A
$20E3 EE 13 24 INC $24153
$20E6 AD 13 2A LDA $2A13

$20E9 C9 03 CHMF #503
$20EE FO 01 EEQ L _ERS ($29EE) ($29EE) OK
$29ED 60 RT3

A

L_ERS ($29EE) ($29EE) OK

A

$20EE A9 00 LD4 #500

$20F0 8D 13 2A STA $2A13
$20F3 EE 14 24 INC $2al4
A
L_TMP ($29F6) ($Z2A05) OK
A
$20F5 AF 14 24 LDY $24l4

$29F9 ED 15 2A LDA $2A15,X

$29FC C9 FF CMF #5FF
$29FE DO 0§ ENE L _ERS ($2A08) ($29FE) OK
$2A00 AZ 00 LI #3500

$2402 £E 14 24 5T $24l4
$2A05 4C F& 29 JMP L_JMP ($29F6) ($2A405) OK

A
L_ERS ($2408) ($29FE) OK
A
$2A08 AZ 00 LI #3500
A

L_ERS ($2A04) ($24l0) OK

oD 55 Di $DASS, ¥
$2A0E EO0 28 CPX #5283

$2410 DO F& ENE L _ERS ($2A04) ($2al0) DK
$2412 60 RT3

4 I

Preview

$2410 DO Fa ENE L_EBR3 ($2a04) ($2410) OK
$2412 a0 RTS

£

$2413 01 01 OFL (501,X)

A3L
AJL
OF&

OF4 $0E03
Lbyte 504
431 §FF

Page 37 of 39 Pages

7 Appendix

7.1 FAQ

I'm using VICE 2.2! Does it work anyway? The VICE Development Team made some major
changes, but I guess it will work. However, I recommend to get the 2.3 version.

Where are the illegal OP-Codes? I think it does not make sense to do that for the complete
memory. Use the illegal shaker in case you think you are facing them.

What about other emulator imports? One day, maybe.

Can | have several program instances? Yes!

Where is the OP-Code “BRK”? The OP-Code $00 is internally handled as an unknown CPU
instruction, so it can be put in rows by the CONCAT. Hope you don't mind too much.

What about IRQ labels? Simple forward interpretation could result in incomplete or even
incorrect results. I don't know how to solve this without writing an OP-Code emulator yet.

What about generating labels for static offsets (LDA,STA etc. $XXXX): Might be useful in
case you like to rip off speed code, but also may result in tens of thousands useless labels.
However, I guess this function will be used rarely. So... maybe.

What about an extended CRAP version with [F ELSE and LOOP commands? Maybe.

Why does Infiltrator use so much RAM? Blame the Lazarus Development Team. At least I
used UPX 3.07 to compress the executable file.

What about function trees? Planned.

7.2 Known Bugs

The connecting code lines in the disassembler are not redrawn when using the mouse
wheel. Until now they are only drawn on a canvas element when pushing the cursors, page
up/down keys or the mouse buttons.

When closing a tool window not using the main Infiltrator form buttons you have to push
the button twice for a reinitialisation.

The CRAP error handling is insufficient.

Page 38 of 39 Pages

7.3 "AS IS" Warranty Statement

ATTENTION: BY DOWNLOADING AND USING THE SOFTWARE, YOU ARE AGREEING
TO BE BOUND BY THE FOLLOWING TERMS. IF YOU DO NOT AGREE TO ALL OF THESE
TERMS, DO NOT DOWNLOAD AND USE THE SOFTWARE ON YOUR SYSTEM.

"AS IS" WARRANTY STATEMENT

DISCLAIMER. TO THE EXTENT ALLOWED BY LOCAL LAW, THIS SOFTWARE
PRODUCT ("SOFTWARE") IS PROVIDED TO YOU "AS IS" WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED.
THE OWNER OF THE COPYRIGHT SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.

LIMITATION OF LIABILITY. EXCEPT TO THE EXTENT PROHIBITED BY LOCAL LAW,
IN NO EVENT WILL THE OWNER OF THE COPYRIGHT BE LIABLE FOR DIRECT,
SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER DAMAGES (INCLUDING LOST
PROFIT, LOST DATA, OR DOWNTIME COSTS), ARISING OUT OF THE USE, INABILITY
TO USE, OR THE RESULTS OF USE OF THE SOFTWARE, WHETHER BASED IN
WARRANTY, CONTRACT, TORT OR OTHER LEGAL THEORY, AND WHETHER OR NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Page 39 of 39 Pages

	1 Introduction
	1.1 Terms of Use

	2 Getting Started (Showcase)
	2.1 Importing a File

	3 Standard Support Tools
	3.1 Unholy Buttons
	3.2 Sprite Pad (SPR)
	3.3 Bitmaps (BMP)
	3.4 Charsets and Screens (C&S)
	3.5 Sine Analysis (SINE)
	3.6 Hex Pad (HEX)

	4 Lekker Bratwurst
	4.1 Rip Off Koala
	4.2 Sine Analysis (more typical shapes)
	 8-Bit Samples
	 Speed Optimized Code

	4.3 CRAP

	5 The Disassembler
	5.1 The Label Concept
	 The good OK, the bad BAD, and the ugly JAM

	5.2 Options and Searchfunctions
	5.3 Searchlists
	5.4 Preview Window
	5.5 NaviMap
	5.6 Pop-Up Menu (Basics)
	5.7 Code Shaker and Illegal Shaker
	5.8 Quicksearch and the Quicksearchlist
	5.9 Disable to Data

	6 Showcase
	6.1 Fill the Excluded List
	6.2 Solve the BADs and JAMs
	6.3 Understand the Program Framework
	6.4 Get the IKARI Logo Shaker
	6.5 Get the Logo Flash Routine
	6.6 Get the TSM Y-Movement Routine
	6.7 Get the Scroll Text Flasher

	7 Appendix
	7.1 FAQ
	7.2 Known Bugs
	7.3 "AS IS" Warranty Statement

